» » » Виктор Бродянский - Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии


Авторские права

Виктор Бродянский - Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии

Здесь можно скачать бесплатно "Виктор Бродянский - Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии" в формате fb2, epub, txt, doc, pdf. Жанр: Физика, издательство ФИЗМАТЛИТ, год 2001. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Виктор Бродянский - Вечный двигатель —  прежде и теперь. От утопии —  к науке, от науки —  к утопии
Рейтинг:
Название:
Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии
Издательство:
ФИЗМАТЛИТ
Жанр:
Год:
2001
ISBN:
5-9221-0202-8
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии"

Описание и краткое содержание "Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии" читать бесплатно онлайн.



В популярной форме рассказывается об истории вечного двигателя от первых попыток его создания до современных «изобретений». Раскрывается значение для энергетики двух фундаментальных законов — первого и второго начал термодинамики. Показана бесполезность попыток обойти эти законы независимо от сложности предлагаемых для этого устройств.

Для широкого круга читателей, интересующихся историей техники и ее современными проблемами.






Казалось бы, на этом история должна была закончиться — научная истина восторжествовала, а автор «тепловика» получил желанный документ. Однако прошло больше 20 лет и идея «тепловика» всплыла снова. В газете «Политика» появилась статья о Мордасевиче с интригующим названием «Безумец или гений?» [3.22].

Нам нет необходимости анализировать эту или другие иностранные работы, поскольку имеются в достаточном количестве аналогичные отечественные публикации на русском языке.

Остановимся в этой связи на работах проф. М.А. Мамонтова [3.16; 3.18]. Читателям приходится вникать в подобного рода теоретические построения — это почти всегда тяжелая работа. Тяжела она не из-за трудности постижения глубоких мыслей, а вследствие особой формы изложения.

Известен мудрый афоризм: «Кто ясно мыслит, тот ясно излагает». Не менее верно и обратное утверждение. Как правило, ошибочные теории излагаются очень путано, с применением массы ученых слов и новых терминов, новых понятий. Выбраться из получающегося в результате лабиринта не так просто. Это и естественно: при четком и последовательном изложении тех же положений их несостоятельность выявилась бы сама собой. Ложные антинаучные концепции могут жить только в условиях путаницы в мыслях и словах, это их «питательная среда».

Итак, познакомимся с теоретической базой ppm-2 — «обновленной» термодинамикой. Поступим так: сначала приведем соответствующие цитаты, расположив их по возможности в логической последовательности, а затем будем их распутывать и анализировать. Начнем с главы «Принципиальная возможность создания теплового двигателя с одним источником тепла» в [3.16].

Автор выбирает в качестве объекта, в котором происходят явления, «находящиеся в явном противоречии с некоторыми положениями классической термодинамики»[74], — пневматические инструменты, работающие на сжатом воздухе.

«Регулярно наблюдаемые явления конденсации паров воды в рабочей полости пневматических двигателей и отказы в работе этих двигателей вследствие замерзания выделившихся капель воды представляются бесспорным свидетельством реальности охлаждения рабочего тела пневматического двигателя до температуры значительно более низкой, чем температура атмосферного воздуха». И далее:

«Причины столь резкого расхождения приведенных положений классической термодинамики с бесспорными реальными фактами заключаются в классической концепции теплоты, положенной в основу классического анализа. Вопреки этому анализу подвод тепловой энергии в рабочую полость пневматического двигателя совершается посредством тепловой миграции при температуре подводимого рабочего вещества, близкой к температуре окружающей среды (атмосферы). В этих условиях с первых моментов этапа расширения рабочего объема создаются условия, при которых температура рабочего вещества становится ниже температуры окружающей среды. В результате чего:

изменение состояния тела начинается при температуре рабочего вещества, близкой к температуре окружающей среды;

работа совершается за счет охлаждения рабочего вещества ниже температуры окружающей среды;

передача тепла от рабочего тела теплоприемнику производится при отрицательной разности температур (тепло переходит от тела с низкой температурой к телу с высокой температурой)».

Следующая цитата:

«Отмеченные выше явления переохлаждения рабочего тела, наиболее отчетливо наблюдающиеся в пневматических двигателях без подогрева воздуха, имеют принципиальное значение, так как открывают возможность подвода тепла к рабочему телу за счет тепловой энергии атмосферы.

Если обеспечить значительное увеличение внутренней поверхности рабочей полости (поверхности нагрева) и медленное движение поршня, то, используя возникшую разность температур между стенками рабочей полости и рабочим телом, можно процесс расширения из адиабатического превратить в процесс, близкий к изотермическому. Так как изотерма при расширении проходит существенно выше адиабаты, то указанное изменение процесса приведет к существенному увеличению полезной работы.

Таким образом, от пневматического двигателя можно будет получать работу не только за счет энергии воздуха в аккумуляторе, но также за счет использования дарового тепла атмосферы.

Если учесть, что классическая термодинамика в соответствии с ее концепциями категорически отрицает возможность прямого преобразования тепла окружающей среды в работу, то установление возможности такого преобразования в пневматических (газовых) двигателях имеет большое принципиальное значение».

Все изложенное в этих цитатах уже не просто «философия», а конкретные выводы из конкретных явлений. Эти выводы автор в дальнейшем кладет в основу проекта двигателя. Поэтому прежде чем продвигаться дальше, разберем их.

Рис. 5.6. Полосовые графики потоков энергии для адиабатных процессов сжатия (а) и расширения (б) газа

Вначале необходимо подтвердить тот несомненный, хорошо известный факт, что сжатый воздух, расширяясь в пневматических двигателях, охлаждается до температуры более низкой, чем температура окружающей среды. Удивительного в этом ничего нет, и странно, почему М.А. Мамонтов делает отсюда такие далеко идущие выводы. Действительно, хорошо известно, что воздух, как и любой другой газ, нагревается, если его сжимать в адиабатных[75] условиях. Этот факт наблюдает любой велосипедист или автомобилист, накачивающий шины своей машины. Затрачиваемая работа переходит во внутреннюю энергию газа, и его температура повышается. Точно так же при расширении газа с отдачей работы (как, например, в пневмоинструменте) сжатый воздух охлаждается. Отметим, что это охлаждение может быть довольно значительным. Если, например, давление воздуха 4 ат (0,4 МПа) и температура +20 °С (293 К), то при расширении до атмосферного давления он охладится примерно до — 75 °С (198 К), т.е. на 95 °С. В реальных условиях вследствие теплопритока охлаждение будет меньшим, но все же достаточно существенным. Все это происходит «по науке», и никто существование такого процесса не отрицает. Диаграммы потоков энергии для этих случаев показаны на рис. 5.6.

Двинемся дальше и расшифруем вторую, более длинную цитату. В ней речь идет о другом процессе расширения — уже не адиабатном, а изотермическом. Он отличается тем, что по ходу расширения к газу подводится теплота из окружающей среды, причем в таком количестве, чтобы не дать ему охладиться. В результате температура газа остается неизменной (отсюда и термин «изотермический»).

Разберем этот процесс в соответствии с классической термодинамикой, а потом сопоставим результаты с трактовкой проф. М.А. Мамонтова.

На рис. 5.7 показаны графики изменения температуры Т и давления р газа в процессе его расширения в цилиндре пневмоинструмента в зависимости от хода l поршня. Точка 1 соответствует начальному положению поршня, точки 2’ и 2” — конечным его положениям.

Рис. 5.7. Изменения температуры и давления газа (воздуха) при расширении с учетом теплопритока извне

При адиабатном расширении (вертикальная штриховка) температура газа падает, так же как и давление, по мере движения поршня вправо. В конечной точке 2' давление снижается до атмосферного рО.С.., а температура — до ТО.С. значительно более низкой, чем ТО.С.. Отведенная в виде работы энергия Lад соответствует вертикально заштрихованной площадке. По первому закону термодинамики она будет равна уменьшению внутренней энергии газа: Lад = ΔU1-2.

При изотермическом расширении (наклонная штриховка) температура газа только в первый момент снижается на очень малую величину ΔT — разность температур, необходимую для того, чтобы теплота из окружающей среды могла сообщаться газу. Дальше температура будет до самого конца расширения постоянной, равной Т = ТО.С. — ΔT. Давление газа будет падать медленнее, так как к газу постоянно подводится теплота. Поэтому поршень к моменту, когда р станет равным рО.С., пройдет большой путь и остановится только в точке 2''. Соответственно и работа LИЗ, проделанная газом, будет больше и ход поршня, и давление здесь, больше. Добавочная работа соответствует площадке, заштрихованной наклонно; суммарная работа равна количеству подведенной теплоты QО.С. (LИЗ = QО.С.)[76].

Теперь мы можем возвратиться к цитатам из М.А. Мамонтова.

Во втором и третьем пунктах, следующих за словами «В результате чего», все, что происходит в двигателе, почему-то понимается наоборот. Работа, как мы видели, совершается не «за счет охлаждения» (как в адиабатном процессе), а напротив, путем постоянного нагрева рабочего вещества. Ведь теплота QО.С., которая обеспечивает работу двигателя, все время подводится к рабочему телу, а не отводится от него. Поэтому второй пункт неверен. Третий пункт совсем непонятен. Передача теплоты идет не «от рабочего тела», а наоборот, к рабочему телу (газу). И не при «отрицательной» разности температур, а при положительной (ΔT = ТО.С. — T), и не «от тела с низкой температурой» (газа), а напротив, к нему из окружающей среды.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии"

Книги похожие на "Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Виктор Бродянский

Виктор Бродянский - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Виктор Бродянский - Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии"

Отзывы читателей о книге "Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.