» » » » Леонард Сасскинд - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики


Авторские права

Леонард Сасскинд - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Здесь можно скачать бесплатно "Леонард Сасскинд - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Питер, год 2013. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Леонард Сасскинд - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Рейтинг:
Название:
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Издательство:
Питер
Год:
2013
ISBN:
978-5-496-00395-7
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики"

Описание и краткое содержание "Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики" читать бесплатно онлайн.



Что происходит, когда объект падает в черную дыру? Исчезает ли он бесследно?

Около тридцати лет назад один из ведущих исследователей феномена черных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу все, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе черных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку.

Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что все в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краев Вселенной.

Книга включена в «Библиотеку Фонда «Династия».

Фонд некоммерческих программ «Династия» основан в 2001 году Дмитрием Борисовичем Зиминым, почетным президентом компании «Вымпелком». Приоритетные направления деятельности Фонда — поддержка фундаментальной науки и образования в России, популяризация науки и просвещение. «Библиотека Фонда «Династия» — проект Фонда по изданию современных научно-популярных книг, отобранных экспертами-учеными.

Книга, которую вы держите в руках, выпущена под эгидой этого проекта.

Более подробную информацию о Фонде «Династия» вы найдете по адресу www.dynastyfdn.com






Все движения относительны. Движение железнодорожного вагона со скоростью 150 км/ч, движение Земли вокруг Солнца со скоростью 30 км/с и движение Солнечной системы вокруг галактики со скоростью 200 км/с — все это необнаружимо, пока протекает гладко.

Гладко? Что это значит? Рассмотрим жонглера в момент отправления поезда. Внезапно состав трогается. При этом не только пиры смещаются назад, но и сам жонглер может повалиться на Пол. Когда поезд останавливается, тоже происходит нечто подобное. Или, допустим, поезд проходит по резкому изгибу рельсов. Определенно во всех этих ситуациях правила жонглирования потребуют модификации. Что за новый ингредиент в них добавится? Ответ — ускорение.

Ускорение означает изменение скорости. Когда железнодорожный вагон начинает движение или когда он неожиданно останавливается, скорость меняется и возникает ускорение. А что в случае прохождения поворота? Это менее очевидно, но истина все же в том, что и тут скорость изменяется — не по величине, но по направлению. Для физика любое изменение скорости — как по величине, так и по направлению — это ускорение. Так что принцип относительности надо уточнить:

Законы физики одинаковы во всех системах отсчета, которые равномерно (без ускорения) движутся друг по отношению к другу. Принцип относительности был впервые сформулирован примерно за 250 лет до рождения Эйнштейна. И почему же тогда Эйнштейн так знаменит? Потому что он обнаружил очевидный конфликт между принципом относительности и другим принципом физики, который можно назвать принципом Максвелла. Как обсуждалось в главах 2 и 4, Джеймс Клерк Максвелл открыл современную теорию электромагнетизма — теорию всех электрических и магнитных сил в природе. Важнейшее достижение Максвелла состояло в раскрытии великой тайны света. Свет, доказал он, состоит из волн электрических и магнитных возмущений, движущихся сквозь пространство, подобно волнам по поверхности моря. Но для нас важнее всего то, что, как доказал Максвелл, свет в пустом пространстве всегда движется в точности с одной и той же скоростью — около 300 000 км/с2[87]. Именно это я и называю принципом Максвелла:

Независимо от того, как был порожден свет, он движется в пустом пространстве всегда с одной и той же скоростью.

Но теперь у нас возникает проблема — серьезное противоречие между двумя принципами. Эйнштейн был не первым, кто обеспокоился противоречием между принципом относительности и принципом Максвелла, но он более четко увидел проблему. И пока другие разбирались с экспериментальными данными, Эйнштейн, мастер мысленного эксперимента, разбирался с экспериментом, поставленным исключительно внутри его головы. По собственным воспоминаниям Эйнштейна, в 1895 году, когда ему было 16 лет, он сформулировал следующий парадокс. Представив себя в железнодорожном вагоне, движущемся со скоростью света, он наблюдает световую волну, движущуюся рядом с ним в том же направлении. Увидит ли он световой луч, стоящий неподвижно?

Во времена Эйнштейна не было вертолетной техники, но мы можем вообразить его парящим над морем со скоростью, в точности равной скорости океанских волн. Волны будут казаться застывшими. Точно так же, рассуждал шестнадцатилетний юноша, пассажир вагона (напоминаю, движущегося со скоростью света) обнаружит совершенно неподвижную световую волну. Каким-то образом в молодом возрасте Эйнштейн уже знал об уравнениях максвелловской теории достаточно для понимания того, что нарисованная им картина невозможна: принцип Максвелла гласит, что свет всегда движется с одинаковой скоростью. Если законы природы одинаковы во всех системах отсчета, тогда принцип Максвелла можно применить и к движущемуся поезду. Принцип Максвелла и принцип относительности Галилея шли лоб в лоб.

Эйнштейн расчесывал свой зуд десять лет, пока не нашел выхода из положения. В 1905 году он написал свою знаменитую статью «К электродинамике движущихся тел»[88], в которой сформулировал совершенно новую концепцию пространства и времени — специальную теорию относительности. Она радикально изменила представления о расстоянии и длительности, а в особенности то, что мы подразумеваем под одновременностью двух событий.

В тот же период, когда Эйнштейн придумывал специальную теорию относительности, он был озадачен еще одним парадоксом. В начале XX века физики были в крайнем недоумении из-за чернотельного излучения. Вспомните главу 9, где я объяснял, что чернотельное излучение — это электромагнитная энергия, испускаемая святящимся горячим объектом. Представьте себе совершенно пустой закрытый контейнер при температуре абсолютного нуля. Внутри сосуда будет идеальный вакуум. Теперь давайте подогреем сосуд снаружи. Внешние стенки начинают испускать чернотельное излучение, то же происходит и с внутренними стенками. Их излучение попадает в закрытое пространство внутри сосуда, и оно заполняется чернотельным излучением. Электромагнитные волны разной длины мечутся по объему, отскакивая от внутренних стенок: красный свет, голубой, инфракрасный и все остальные цвета спектра.

Согласно классической физике, все длины волн — микроволны, инфракрасные, красные, оранжевые, желтые, зеленые, голубые и ультрафиолетовые волны — должны давать равный энергетический вклад. Но почему мы остановились в этом перечислении? Еще более короткие волны — рентген, гамма-лучи и еще более и более короткие волны — тоже должны давать равный вклад в энергию. Поскольку нет предела тому, сколь короткой может быть волна, классическая физика предсказывает, что в сосуде будет содержаться бесконечное количество энергии. Это признак абсурда — такая энергия немедленно испарила бы сосуд. Но где же именно ошибка?

Проблема эта была столь тяжела, что в конце XIX века ее стали называть ультрафиолетовой катастрофой. И вновь клинч возник в результате столкновения принципов, которые пользовались большим доверием, от обоих было очень трудно отказаться. С одной стороны, волновая теория невероятно успешно объясняла хорошо известные свойства света — дифракцию, преломление, отражение и самое впечатляющее — интерференцию. Никто не готов был отказываться от волновой теории, но, с другой стороны, на каждую длину волны должна приходиться равная энергия — это так называемая теорема о равнораспределении, вытекающая из самых общих аспектов теории теплоты, в частности и того, что тепло — это беспорядочное движение.

В 1900 году Макс Планк выдвинул важные новые идеи, которые вплотную подвели к разрешению дилеммы. Но лишь Эйнштейн в 1905 году нашел правильный ответ. Без всяких колебаний никому не известный патентный клерк сделал невероятно смелый ход. Свет, сказал он, — это не размытые пятна энергии, как считал Максвелл. Он состоит из неделимых частиц энергии, или квантов, которые позднее стали называть фотонами. Можно только изумляться самонадеянности молодого человека, который заявил величайшим ученым всего мира, что все их знания о свете ошибочны.

Гипотеза о том, что свет состоит из отдельных фотонов, энергия которых пропорциональна их частоте, решила проблему. Применив к этим фотонам статистическую механику Больцмана, Эйнштейн обнаружил, что на очень короткие волны (высокие частоты) приходится менее одного фотона. Меньше одного означает ни одного. Так что очень короткие волны не дают энергетического вклада, и мы избегаем ультрафиолетовой катастрофы. Дискуссия на этом не закончилась. Понадобилось почти тридцать лет, чтобы Вернер Гейзенберг, Эрвин Шрёдингер и Поль Дирак примирили эйнштейновские фотоны с максвелловскими волнами. Но именно эйнштейновский прорыв открыл этот путь.

Общая теория относительности, величайшее творение Эйнштейна, также родилась из простого мысленного эксперимента, связанного с конфликтом принципов. Сам мысленный эксперимент был так прост, что выполнить его мог бы даже ребенок. Все, что в нем было, — это повседневное наблюдение: когда поезд набирает скорость, пассажиров прижимает к сиденьям, как будто вагон задрал нос, и гравитация тянет их к хвосту поезда. Так как же, спрашивал Эйнштейн, мы можем определить, что система отсчета ускоряется? И относительно чего она ускоряется?

Ответ Эйнштейна, повторенный клоуном: этого нельзя определить. «Что? — спросил жонглер. — Конечно, это можно сделать. Не вы ли только что сказали мне, что вас прижимает к спинке кресла?» — «Да, — отвечает клоун, — точно также, как если бы кто-то приподнял нос вагона так, чтобы назад вас тянула гравитация». Эйнштейн ухватился за эту идею: невозможно отличить ускорение от воздействия силы тяжести. У пассажира нет способа узнать, действительно поезд начал движение или к спинке сиденья его прижимает гравитация. Из этого парадокса и противоречия родился принцип эквивалентности:


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики"

Книги похожие на "Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Леонард Сасскинд

Леонард Сасскинд - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Леонард Сасскинд - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики"

Отзывы читателей о книге "Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.