Г. Басина - Синергетика. Основы методологии

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Синергетика. Основы методологии"
Описание и краткое содержание "Синергетика. Основы методологии" читать бесплатно онлайн.
В монографии кратко изложены основы синергетической методологии исследования систем и процессов. Методология основана на работах авторов, а также участников Семинара «Синергетика и методы науки» Санкт-Петербургского союза учёных (СПбСУ) и сотрудников Научно-исследовательского центра «Синергетика» СПбСУ, а также на работах других Российских и зарубежных учёных. В настоящее время разработанная методология используется при исследовании таких сложных самоорганизующихся систем как Internet, Человек, Человеческое общество.
Экспериментальные данные показывают, что большинство структур после периода бурного роста выходят на стабильный режим. в котором структура находится значительное время.
Этот процесс можно описать, используя квадратичную функцию f(μ).
Рассмотрим так называемое логистическое уравнение, которое было подробно изучено в связи с анализом роста и стабилизации популяций животных, однако имеет широкое применение при исследовании различных систем. Оно имеет вид dμ/dt = f(1-μ)μ.
Описываемый этим уравнением процесс имеет две стационарные точки μ=0 и μ= 1. Точка μ=0 неустойчива; это значит, что новые структуры могут появляться, в частности, при потере устойчивости старых. Точка μ=0 устойчива. Фазовая плоскость уравнения — зависимость dμ/dt от μ, представляющая собой параболу, наиболее сжато и полно характеризует особенности процесса.
В некотором смысле логистическое уравнение универсально, так как его интегральные кривые описывают процесс перехода динамической системы из одного — неустойчивого состояния в другое — устойчивое. Оно также характеризует типичный процесс роста и стабилизации структур различной природы. Его решение в случае μ< 1 имеет вид.
При стремлении μ к нулю в момент начала роста структуры логистическая кривая асимптотически приближается к экспоненциальной. Однако, по мере увеличения меры μ в структуре, описываемой этой кривой, развиваются процессы, препятствующие дальнейшему экспоненциальному росту структуры, и вблизи μ=0,5 различие кривых становится существенным. Логистическая кривая выходит на асимптоту μ = 1, а экспоненциальная кривая уходит вверх.
Этот закон является простейшим законом, описывающим непрерывным образом формирование новых структур.
Существуют и другие дифференциальные уравнения, решения которых дают функции, позволяющие смоделировать плавный переход из одного состояния в другое. В частности, при анализе роста и размножения биологических объектов нами было получено дифференциальное уравнение dμ/dt = -μlnμ, обладающее теми же стационарными точками, что и логистическое уравнение, но позволяющее вместе со своим аналогом, итерационным соотношением со степенной правой частью единым образом описывать рост и размножение объектов.
Во многих случаях процесс роста сложных систем происходит не непрерывно, а путём размножения элементов системы или поглощения растущей системой новых элементов. Если скачки параметра целого малы, то в первом приближении этот дискретный процесс может быть заменён непрерывным, и для его описания может быть использован аппарат дифференциальных уравнений, в противном случае для описания динамики роста и стабилизации структур может быть использован аппарат итерационных соотношений.
Устойчивые стационарные точки фазовой плоскости или графика, представляющего решение системы итерационных соотношений, обычно являются пределом, к которому стремятся фазовые траектории системы. Такие точки называются аттракторами.
Аттракторами могут быть не только устойчивые стационарные точки, но и замкнутые траектории циклического типа (циклы и торы). В последние годы открыты и в настоящее время интенсивно изучаются ациклические аттракторы, названные странными.
Следующим этапом исследования является численное решение полученных уравнений. Численное решение совместно с качественным анализом позволяет строить не только зависимость меры от времени, которая была в прошлом, и сопоставить полученные данные с результатами наблюдений, но и предсказывать характер этой зависимости, которого следует ожидать в будущем.
Однако, учитывая наши предыдущие рассуждения, можно утверждать, что точное определение параметра целого системы в подавляющем большинстве случаев невозможно. Любое детерминированное математическое описание, использующее дифференциальные уравнения или итерационные процессы должно сопровождаться дополнительным к нему вероятностным описанием, характеризующим меру и характер распределения отклонения реальной величины параметра целого от его расчётного значения. Существование такой двойственности приводит к необходимости рассмотрения третьей величины, характеризующей структуру и её модель. Этой величиной может являться соотношение мер, определяемое некоторой функцией от параметра целого и меры его вариации. Элементы указанной триады в зависимости от ситуации и способа рассмотрения могут меняться местами.
Глава 3. Фазовое пространство динамической системы
Однако анализа динамики одного, хотя и удачно выбранного, параметра целого чаще всего бывает недостаточно для полного исследования поведения сложной системы, особенно в тех случаях, когда выбранный параметр принимает устойчивое стационарное значение. Система существует и активно функционирует при постоянном значении параметра целого. В этом, случае можно ввести некоторые обобщённые координаты, изменение которых более подробно характеризуют динамику системы. При этом исследуемый объект может быть описан как динамическая система в некотором фазовом пространстве обобщённых координат.
Величина Xi,i=1,…, n, описывает изменение i-й координаты. X, может включать несколько переменных, характеризующих действие этой координаты, а возможно, и целого континуума. Эти координаты собраны в вектор состояния Х(Х1, Х2, …).
Состояние изучаемого объекта в данный момент времени может быть задано точкой в некотором множестве X, в частности в n-мерном многообразии, В этом случае изучаемому объекту соответствует некоторая n-мерная динамическая система, а множество всех точек, соответствующих различным состояниям, называется n-мерным фазовым пространством. Совокупность состояний данной системы в различные моменты времени формирует одномерное пространство (линию), называемую фазовой траекторией системы. Если фазовое пространство системы — n-мерное гладкое многообразие, то фазовая траектория системы гладкая кривая (за исключением некоторых особых точек) и для её описания (а также для описания пучка траекторий, начинающихся из различных точек фазового пространства) может быть использован аппарат системы дифференциальных уравнений dX/dt = f(X,t). Здесь dX/dt — производная вектора X по времени.
Пусть мы имеем какое-либо решение системы дифференциальных уравнений в виде Х(t) = Ф(Х0, t), где Х(t) — значения координат фазовой траектории, проходящей через точку Х0 в момент времени t0. В принципе, эта система уравнений может быть разрешена относительно t: t = Ф-1 (Х, Х0).
Предположим, что мы знаем состояние динамической системы в момент Tn, соответствующее точке Хn, и хотим определить состояние той же системы Xn+1 в момент Tn+1. Тогда, воспользовавшись предыдущими формулами, получим Xn+1= Ф(Х0, Тn+1) = Ф(Х0,Tn + (ΔT)n) = Ф{X0, [Ф-1(X0, Хn) + (ΔTn]}.
Введем понятие оператора F, определяющего изменение системы Х во времени: Хn+1 = F(Xn). Оператор F порождает итерационный процесс и указывает преобразование состояния динамической системы Хn в момент времени Tn в её состояние Хn+1 в момент времени Tn+1.
В принципе, оператор F может быть введён в более общем случае, когда непрерывная зависимость от времени либо отсутствует вовсе, либо не может быть определена.
Основной идеей Г. Хакена, являющейся одной из основополагающих в Синергетике, является идея выделения среди обобщенных координат сложной системы нескольких наименее устойчивых мод, названных им главными модами или параметрами порядка, неустойчивость которых приводит к качественному изменению состояния всей системы, и таких координат, которые сами мало изменяются, однако которых изменяет характер устойчивости состояния основных мод. Они были названы управляющими параметрами.
Теория нелинейных динамических систем в настоящее время интенсивно развивается. Предложены различные формы классификации систем и их математических моделей. Введена терминология, которая активно внедряется в практику теоретических и экспериментальных исследований. Понятия фазового пространства, стационарной точки, цикла, тора, аттрактора, бифуркации, сепаратрисы уже давно вошли в обиход тех, кто использует результаты качественного анализа и расчётов параметров модельных динамических систем для исследования реальных явлений.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Синергетика. Основы методологии"
Книги похожие на "Синергетика. Основы методологии" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Г. Басина - Синергетика. Основы методологии"
Отзывы читателей о книге "Синергетика. Основы методологии", комментарии и мнения людей о произведении.