Маркус Чоун - Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной"
Описание и краткое содержание "Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной" читать бесплатно онлайн.
Маркус Чоун — британский ученый, журналист и писатель, один из лучших популяризаторов науки сегодняшнего дня. Мало кто умеет так, как он — просто, доходчиво, с легким юмором, — рассказать о сложнейших научных представлениях, будь то принципы квантовой механики или космологические концепции.
В своей новой книге «Чудеса обычных вещей» Маркус Чоун демонстрирует удивительный, обманчиво простой принцип знакомства с миром современной физики: он берет самые обычные вещи и явления и заставляет их рассказывать о тайнах мироздания, о загадках микро- и макромира.
Под пером Маркуса Чоуна обыкновенное оконное стекло повествует о вероятностях, управляющих Вселенной. Капелька крови на пальце, оставшаяся после укола, делится впечатлениями о процессах, происходящих в глубинах звезд. А заурядная электрическая лампочка и доски пола под ногами превращаются в парадоксальные, загадочные предметы, которые, оказывается, в принципе не должны существовать!
Маркус Чоун (р. 1959) — в прошлом радиоастроном, успешно работавший в Калифорнийском технологическом институте; ныне — постоянный автор журнала «Нью сайентист», теле- и радиоведущий, популяризатор науки.
И мужчине и женщине я говорю: да будет ваша душа безмятежна перед миллионом вселенных.
Уолт Уитман («Песня о себе»)[59]Оглядитесь вокруг. Земля полна жизнью. Никто не знает, как эта жизнь началась. Но бесспорно одно. Жизнь в том виде, в котором мы ее знаем, не могла начаться без углерода. Атомы углерода обладают уникальной способностью соединяться с другими атомами углерода, создавая ошеломительный набор сложных молекул. В наших телах углеродные «биомолекулы» выполняют множество важных задач — метаболизируют пищу, которую мы едим; реагируют на свет, попадающий на сетчатку; шифруют наследственную информацию в дезоксирибонуклеиновой кислоте, или ДНК, и так далее Мы — углеродные двуногие, само существование которых строится на том, что углерод — широко распространенный элемент. После водорода, гелия и кислорода углерод — четвертый элемент, которым изобилует Вселенная. И вот это изобилие, между прочим, рассказывает весьма интересные вещи. Оно говорит нам о цепочке поразительно неправдоподобных совпадений в свойствах горстки атомных ядер. Мало того что эти совпадения несут ответственность за наше существование, они прозрачнейшим образом намекают, что наша Вселенная — всего лишь одна из бесконечного множества вселенных, плавающих, подобно пузырям, в невообразимо гигантской «мультивселенной».
Это слишком необыкновенное заключение, чтобы вывести его из одного лишь факта нашего существования, однако логика здесь, если вдуматься, совершенно неотвратимая. Первым делом надо осознать, что все элементы, включая углерод, не были размещены во Вселенной Создателем в День Номер Один. Вместо этого Вселенная началась с простейших ядерных кирпичиков — протонов и нейтронов, — и лишь впоследствии они склеились, чтобы образовать ядра девяносто двух природных элементов.
Свидетельства того, что элементы были сделаны — собраны по кирпичику, — на самом деле не так уж бросаются в глаза. Один из наиболее важных ключей к разгадке — изобилие различных элементов во Вселенной. Оценить это можно многими способами. Например, проанализировать состав камней из земной коры и метеоритов из космоса. Такие измерения впервые произвел норвежский химик Виктор Мориц Гольдшмидт в 1936 году. Распространенность элементов также может быть измерена путем исследования характерных «пальцевых отпечатков», которые они оставляют в свете, идущем от звезд; эту технику эффективно использовала Сесилия Пейн, когда она удивила научный мир, открыв, что Солнце едва ли не целиком состоит из самых легких элементов — водорода и гелия. Здесь интересно вспомнить слова французского философа Огюста Конта (1798–1857), составившего в 1835 году список вещей, которых, как он полагал, никогда не будут постигнуты наукой. Имея в виду Солнце и звезды, Конт писал: «Мы понимаем, как определить их форму, расстояния до них, их массу и их движения, но мы никогда не сможем ничего узнать об их химическом и минералогическом составе»[60]. Не прошло и четверти столетия, как немецкий физик Густав Роберт Кирхгоф (1824–1887) показал, что химические элементы — например, натрий, — будучи накалены в пламени газовой горелки, испускают свет с характерными для них длинами волн, и подобные «спектральные отпечатки» можно использовать для идентификации различных элементов в свете, идущем от Солнца и звезд. Огюсту Конту не пришлось краснеть от стыда и брать свои слова обратно — он умер до этого открытия[61].
Анализ состава звезд, земных камней и метеоритов дал поразительные результаты. Оказалось, что по всему космосу элементы присутствуют примерно в одних и тех же пропорциях. Как сказал американский физик Ричард Фейнман: «…самым выдающимся открытием астрономии было открытие того, что звезды состоят из таких же атомов, что и Земля»[62]. Менее удивительно, однако не менее важно то, что во «вселенской» распространенности элементов виден определенный рисунок. Общее правило таково: чем тяжелее элемент, тем реже он встречается в природе. Однако на деле кривая распространенности элементов уходит вниз невероятно круто: например уран, элемент № 92, встречается в миллиард раз реже, чем элемент № 11, натрий. Легче всего это увидеть на листе миллиметровки. Если построить график, на горизонтальной оси расположив элементы по возрастанию их атомного веса, а на вертикальной оси отобразив распространенность элементов в природе, то в результате получится горный склон. От самых легких элементов в левой части листа склон крутым обрывом уйдет к тяжелым элементам, наподобие урана, расположенным в крайней правой части.
Некоторые элементы, однако, выступают против общей тенденции — им словно бы не нравится это резкое падение распространенности с нарастанием атомного веса. Получается, что они более распространены, чем их соседи по горному склону. Так, на склоне есть холмики, соответствующие углероду, азоту и кислороду; железо и его ближайшие соседи тоже образуют холмик. Но встречаются и такие элементы, распространенность которых отчетливо меньше, чем у соседей. Например, на склоне есть впадины, соответствующие литию, бериллию и бору.
Почему одни элементы более распространены, чем ожидалось, а другие менее? Важный ключ к разгадке можно найти в удивительном месте: в астоновской долине ядерной стабильности.
Вспомним, что в долине ядерной стабильности ядра с наименьшей массой в пересчете на один нуклон — железо и никель — находятся внизу, а по склонам, расположенным по обе стороны низины, поднимаются атомы, у которых все больше и больше массы в пересчете на нуклон. Ну что же, как выяснилось, эта простая картина не рассказывала всей правды. Когда Астон усовершенствовал свой масс-спектрограф и смог измерить массы ядер более точно, он обнаружил, что склоны его долины не слишком уж гладкие. Там, где были ядра с большей массой на нуклон, чем у ближайших соседей, располагались небольшие бугорки, а там, где были ядра с меньшей массой на нуклон, получились ямки. Примечательно то, что горбики на горном склоне распространенности элементов в точности совпали с ямками астоновской долины ядерной стабильности, а впадины на склоне распространенности совпали с холмиками на склонах астоновской долины. Вывод неизбежен: между этими явлениями должна быть связь. Насколько распространен элемент, должно зависеть от конкретных свойств его атомного ядра. Это и есть сильнейший намек на то, что за формированием элементов стоят ядерные процессы, — иначе говоря, намек на то, что элементы были сделаны.
Представим себе, что высоко со склонов долины кто-то сбрасывает партию футбольных мячей. Катясь по склонам ко дну долины, они огибают бугорки, но застревают в ямках. Соответствие между распространенностью элементов в космосе и астоновской кривой говорит о том, что нечто подобное, видимо, произошло и в природе. Атомные ядра, должно быть, были «сброшены» с высокого левого склона долины ядерной стабильности. Затем они «покатились» по склону ко дну долины, огибая бугорки и застревая в ямках. Атомное ядро в верхней левой части астоновской долины ядерной стабильности — это ядро маленькое, легкое. То ядро, которое скатывается ко дну долины, следовательно, не что иное, как легкое ядро, становящееся все тяжелее и тяжелее по мере последовательного накопления в нем ядерных кирпичиков. Другими словами, это легкое ядро, из которого строится более тяжелое.
Но если элементы были сделаны, на что указывают все свидетельства, то где именно происходило это делание? Ключевой момент здесь — температура, требующаяся для построения элементов. У ядер, которые побольше и потяжелее, и электрический заряд соответственно больше, чем у тех ядер, что поменьше и полегче. Следовательно, большие ядра намного яростнее отпихивают друг друга, а это означает только одно: чтобы они как следует столкнулись да еще склеились, требуются куда более высокие температуры. Судя по всему, самое жаркое место во Вселенной — это звезды, подобные Солнцу. К несчастью, расчеты английского астронома Артура Эддингтона, выполненные в 1925 году, показали, что звезды не могут быть космическими плавильными тиглями, в которых выпекаются элементы. Как объяснил Эддингтон, по причине вращения самого Солнца вещество внутри нашей звезды пребывает в нескончаемом круговом движении, и в результате этой бесконечной циркуляции солнечная материя непрерывно и очень тщательно перемешивается. Поэтому, если бы водород спекался в гелий, порождая таким образом солнечный свет, «пепел» гелия равномерно распространялся бы по всему веществу звезды. Беда в том, что этот пепел постоянно разбавлял бы водородное топливо Солнца. По мере хода времени Солнце постепенно остывало бы, а затем погасло бы окончательно. От тигля же, в котором выпекаются элементы, требуется как раз обратное.
В Соединенных Штатах Джордж Гамов знал о расчетах Эддингтона. Соображения английского астронома побуждали его найти другой плавильный тигель, достаточно горячий, чтобы в нем можно было выпекать элементы. И вскоре он нашел такой тигель: огненный шар Большого взрыва. В 1929 году американский астроном Эдвин Хаббл (1889–1953), работавший в обсерватории Маунт-Вилсон в Южной Калифорнии, открыл, что галактики (это тоже «кирпичики», но уже большой Вселенной, их миллиарды и миллиарды, и наш Млечный Путь лишь один из них) разлетаются друг от друга, подобно космической шрапнели, несущейся во все стороны после взрыва титанического фугаса. Мы живем в расширяющейся Вселенной. И поскольку она расширяется, следует неизбежный вывод: в прошлом Вселенная была гораздо меньше. Если вообразить, что это расширение идет в обратном направлении, словно бы нам стали показывать фильм задом наперед, мы, по сути, придем к некоей точке во времени, когда все мироздание было сжато в бесконечно малом объеме. Это и есть момент рождения Вселенной в Большом взрыве, случившемся, как представляется сегодня, 13,7 миллиарда лет назад.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной"
Книги похожие на "Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Маркус Чоун - Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной"
Отзывы читателей о книге "Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной", комментарии и мнения людей о произведении.