» » » » Шинтан Яу - Теория струн и скрытые измерения Вселенной


Авторские права

Шинтан Яу - Теория струн и скрытые измерения Вселенной

Здесь можно скачать бесплатно "Шинтан Яу - Теория струн и скрытые измерения Вселенной" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Питер, год 2012. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Шинтан Яу - Теория струн и скрытые измерения Вселенной
Рейтинг:
Название:
Теория струн и скрытые измерения Вселенной
Автор:
Издательство:
Питер
Год:
2012
ISBN:
978-5-459-00938-5
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Теория струн и скрытые измерения Вселенной"

Описание и краткое содержание "Теория струн и скрытые измерения Вселенной" читать бесплатно онлайн.



Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.

Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.






Хотя мы с Заслоу набросали общий подход, полное доказательство было получено только спустя несколько лет другими учеными — Джимом Брайаном из Университета Британской Колумбии и Найчунгом Конаном Лойнгом из Университета Миннесоты. В результате теперь у нас есть математическая теорема, которая является истинной безотносительно к истинности теории струн.

Рис. 13.3. Если вы идете по экватору и все время удерживаете палку параллельно земле по касательной к поверхности, то опишете цилиндр. Если, огибая земной шар, вы перевернете палку на 180 градусов, то опишете более сложную поверхность, имеющую одну, а не две стороны, называемую лентой Мёбиуса


Кроме того, формула, которую мы вывели для расчета рациональных кривых на поверхностях K3, дает функцию для генерирования всех чисел, которые вы получаете для рациональных кривых с произвольным количеством узлов. Оказывается, эта функция по существу воспроизводит знаменитые тау-функции, которые были введены в 1916 году индийским математиком и гением-самоучкой Шринивасой Рамануджаном.[267] С тех пор наша функция в сочетании с высказанными Рамануджаном предположениями привела ко многим важным открытиям в области теории чисел. Насколько мне известно, наша работа впервые помогла установить серьезную связь между исчислительной геометрией (предметом расчета кривых) и тау-функцией.

Эта связь была закреплена последними работами Юйонг Дзена, молодого математика, недавно приглашенного работать в Гарвард, которого обучал мой бывший студент Юн Ли. Дзен показал, что не только рациональные кривые на поверхности КЗ связаны с тау-функцией, но расчет любых кривых произвольного рода на любой алгебраической поверхности связан с тау-функцией. И Дзен сделал это, доказав гипотезу, высказанную немецким математиком Лотаром Гёттше, который обобщил так называемую формулу Яу-Заслоу для рациональных кривых на поверхностях K3.[268] Новая обобщенная формула, справедливость которой доказал Дзен, носит имя Гёттше-Яу-Заслоу. Несколькими годами ранее бывший мой аспирант А. К. Лью опубликовал доказательство формулы Гёттше-Яу-Заслоу.[269] Но его доказательство, выполненное с помощью сугубо технического, аналитического метода, не дает объяснения в том виде, который устроил бы алгебраических геометров. Таким образом, статья Лью не рассматривается в качестве окончательного подтверждения этой формулы. Доказательство Дзена, основанное на аргументах алгебраической геометрии, получило более широкое признание.

Таким образом, благодаря выводу, изначально вытекающему из теории струн, мы поняли, что связь между исчислительной геометрией и тау-функцией Рамануджана, вероятно, глубже, чем предполагалось. Мы всегда ищем похожие связи между различными разделами математики, поскольку эти неожиданные связи часто могут привести нас к новому пониманию обоих разделов. Я подозреваю, что со временем будет открыто больше связей между исчислительной геометрией и тау-функцией.

В качестве яркого примера обогащения математики теорией струн приведем разработанную в 1990-х годах Виттеном и Натаном Зайбергом из Университета Ратджерса систему уравнений, получившую название Зайберга-Виттена (см. третью главу), которая ускорила исследование четырехмерных пространств. Эти уравнения оказались проще для использования, чем существующие методы, что привело к взрывному росту количества новых идей в работе с четырьмя измерениями, главной из которых является попытка классифицировать и систематизировать все возможные формы. Хотя уравнения Зайберга-Виттена первоначально были получены в теории поля, вскоре было показано, что они также могут быть выведены из теории струн. Кроме того, использование этой идеи в контексте теории струн значительно расширило наши представления о ней. «В ряде случаев, — говорит мой коллега, — Виттен обычно советовал математикам: вот, возьмите эти уравнения, они могут оказаться полезными. И действительно, они оказывались полезными». «Теория струн стала таким благом для математики, таким огромным источникам новых идей, что даже если она окажется несостоятельной как теория природы, она уже сделала для математики больше, чем любой вид человеческой деятельности, который я могу вспомнить», — говорит мой давний сотрудник Бонг Лиан из Университета Брандейса.[270] Хотя сам я об этом сказал бы более сдержанно, чем Лиан, но, в принципе, я согласен с ним, потому что выигрыш оказался неожиданно огромным. Нашу точку зрения разделяет и Атья: «Теория струн трансформировала, обновила и революционизировала крупные разделы математики… в тех областях, которые кажутся далекими от физики». Многие из областей математики — «геометрию, топологию, алгебраическую геометрию и теорию групп — похоже, смешали в один коктейль, причем способом, глубоко связанным с их основным содержанием, и не по касательной, а прямо в сердце математики».[271]

Хотя в прошлом другие области физики обеспечивали математику информацией, теория струн проникла гораздо глубже во внутреннюю структуру математики, способствуя новым концептуальным прорывам. По иронии судьбы, появление теории струн привело к гармоничному сотрудничеству внутри самой математики, поскольку теория струн потребовала многого от математиков, работающих в самых разных областях, включающих дифференциальную геометрию, алгебраическую геометрию, теорию групп Ли, теорию чисел и другие. Непостижимым образом наши надежды в отношении единой теории физики содействовали объединению математики.

Несмотря на красоту теории струн и ее глубокое влияние на математику, остается открытым вопрос: как долго мы должны ждать внешнего подтверждения какой-нибудь связи, любой связи теории с реальным миром? Брайан Грин считает, что следует набраться терпения, учитывая, что «мы пытаемся ответить на самые трудные, самые глубокие вопросы в истории науки. [Даже] если мы не получим на них ответы через 50 или 100 лет, мы должны идти вперед».[272] Шон Кэрролл, физик из Калифорнийского технологического института, соглашается: «Глубокие идеи не появляются в короткие сроки».[273] Иначе говоря, куда спешить, в конце концов?

Здесь, возможно, будет полезным напомнить исторический прецедент. «В XIX веке вопрос, почему вода кипит при температуре 100 градусов Цельсия, оставался без ответа, — отмечает Виттен. — Если бы вы сказали физику XIX века, что в XX веке вы сможете вычислить температуру кипения, то это показалось бы ему сказкой».[274]

Нейтронные звезды, черные дыры, гравитационные линзы — плотные концентрации вещества, которые действуют, как линзы в небе, — были бы также отвергнуты, как полнейшая фантазия, если бы их на самом деле не увидели астрономы. «История науки полна суждений о том, что та или иная идея не является практической и никогда не будет проверена», — добавляет Виттен. Но история физики также показывает, что «хорошие идеи выдерживают проверку».[275] Благодаря новым технологиям, о которых даже не догадывалось предыдущее поколение, идеи, которые, казалось бы, выходят за рамки разумного, превращаются из научной фантастики в научные факты.

«Чем важнее вопрос, тем больше упорства следует проявить при его проверке», — утверждает физик Массачусетского технологического института Алан Гут, один из создателей инфляционной теории, согласно которой наша Вселенная прошла через короткий период быстрого неудержимого расширения в первые моменты Большого взрыва. «Когда мы работали над инфляцией, я даже не думал, что ее будут проверять при моей жизни, — говорит Гут. — Это было бы невероятное везение, если бы нам удалось проверить инфляцию, и нам повезло. Хотя это была не столько удача, сколько потрясающее мастерство исследователей. То же может произойти и с теорией струн. И, возможно, нам не придется ждать сотни лет».[276]

Несмотря на то, что теорию струн следует рассматривать как гипотезу, в этом нет ничего плохого. Такие гипотезы в математике, как гипотеза Калаби, являются ничем иным, как предположениями, основанными на математической теории. Они абсолютно необходимы для прогресса в моей области. И мы не достигли бы никаких существенных успехов в физике и не продвинулись бы в понимании многих вещей, если не учились бы на гипотезах — это лучше, чем бездействие. Тем не менее слово «гипотеза» подразумевает некоторую степень сомнения, и ваша реакция на него зависит от вашего склада характера, а также от вашего персонального вклада в задачу. Что касается теории струн, то одни ученые настраивают себя на длинный путь в надежде, что их усилия, в конце концов, оправдаются. Другие, кому не нравятся долго решаемые задачи, выдвигают свои сомнения на первый план и размахивают метафорическими плакатами с надписью «Остановитесь! Вы совершаете большую ошибку».

Было время (не так давно — каких-то несколько веков назад), когда людей предупреждали об опасности плавания под парусом вдали от родных берегов, пугая тем, что судно вместе с пассажирами на борту может упасть с края земли. Но некоторые бесстрашные путешественники, тем не менее, ставили паруса, и вместо того, чтобы упасть с края света, открыли Новый Свет.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Теория струн и скрытые измерения Вселенной"

Книги похожие на "Теория струн и скрытые измерения Вселенной" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Шинтан Яу

Шинтан Яу - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Шинтан Яу - Теория струн и скрытые измерения Вселенной"

Отзывы читателей о книге "Теория струн и скрытые измерения Вселенной", комментарии и мнения людей о произведении.

  1. Мне очень интересно подробнее узнать о "теории струн "
А что Вы думаете о книге? Оставьте Ваш отзыв.