» » » » Шинтан Яу - Теория струн и скрытые измерения Вселенной


Авторские права

Шинтан Яу - Теория струн и скрытые измерения Вселенной

Здесь можно скачать бесплатно "Шинтан Яу - Теория струн и скрытые измерения Вселенной" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Питер, год 2012. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Шинтан Яу - Теория струн и скрытые измерения Вселенной
Рейтинг:
Название:
Теория струн и скрытые измерения Вселенной
Автор:
Издательство:
Питер
Год:
2012
ISBN:
978-5-459-00938-5
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Теория струн и скрытые измерения Вселенной"

Описание и краткое содержание "Теория струн и скрытые измерения Вселенной" читать бесплатно онлайн.



Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.

Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.






Наконец, Рэчел Бин соглашается, что «инфляционные модели в искривленных горловинах могут не дать ожидаемого ответа. Но эти модели основаны на геометриях, вытекающих из теории струн, на основании которой мы можем сделать детальные предсказания, которые затем можно проверить. Другими словами, это хорошая отправная точка для старта».[243]

Хорошей новостью является то, что для старта существует не единственная отправная точка. В то время как одни исследователи прочесывают ночное (или дневное) небо в поисках признаков дополнительных измерений, глаза других нацелены на Большой адронный коллайдер. Обнаружение намеков на существование дополнительных измерений не является приоритетной задачей коллайдера, но в списке его заданий стоит достаточно высоко.

Самой логичной отправной точкой для струнных теоретиков является поиск суперсимметричных партнеров уже известных частиц. Суперсимметрия вызывает интерес у многих физиков, а не только у струнных теоретиков: суперсимметричные партнеры, обладающие самой маленькой массой, а это могут быть нейтралино, гравитино или снейтрино, чрезвычайно важны в космологии, поскольку они считаются главными кандидатами на роль темной материи. Предположительная причина, по которой мы еще не наблюдали эти частицы и пока они остаются для нас невидимыми и, следовательно, темными, заключается в том, что они массивнее обычных частиц. В настоящее время не существует достаточно мощных коллайдеров, способных рождать эти более тяжелые «суперпартнеры», поэтому на Большой адронный коллайдер возлагаются большие надежды.

В моделях на основе теории струн, разработанных Кумруном Вафой из Гарвардского университета и Джонатаном Хекманом из Института перспективных исследований, гравитино — гипотетический суперпартнер гравитона (частицы, ответственной за гравитацию) — является самым легким суперпартнером. В отличие от более тяжелых суперпартнеров, гравитино должен быть абсолютно стабильным, так как ему не на что распадаться. Гравитино в вышеуказанной модели составляет большую часть темной материи Вселенной. Хотя гравитино характеризуется слишком слабым взаимодействием, чтобы его можно было наблюдать с помощью Большого адронного коллайдера, Вафа и Хекман полагают, что другая теоретическая суперсимметричная частица — тау-слептон (stau), суперпартнер так называемого тау-лептона — должна быть стабильной где-то в диапазоне от секунды до часа, а это больше чем достаточно, чтобы ее зафиксировали детекторы коллайдера.

Обнаружение таких частиц подтвердит важный аспект теории струн. Как мы уже видели, многообразия Калаби-Яу были тщательно выбраны струнными теоретиками в качестве подходящей геометрии для дополнительных измерений, отчасти из-за суперсимметрии, автоматически встроенной в их внутреннюю структуру.

Без преувеличения можно сказать, что обнаружение признаков суперсимметрии на Большом адронном коллайдере будет обнадеживающей новостью для защитников теории струн и объектов Калаби-Яу. Бёрт Оврут объясняет, что характеристики суперсимметричных частиц сами могут рассказать нам о скрытых измерениях, «потому что способ компактификации многообразия Калаби-Яу влияет на вид суперсимметрии и уровень суперсимметрии, которые вы получаете. Вы можете обнаружить компактификации, которые сохраняют суперсимметрию, или те, что разрушают ее».[244]

Подтверждение суперсимметрии само по себе не подтверждает теорию струн, но, по крайней мере, указывает в том же направлении, свидетельствуя, что часть истории, которую рассказывает теория струн, является верной. С другой стороны, если мы не найдем суперсимметричных частиц, это не будет означать краха теории струн. Это может означать, что мы ошиблись в расчетах и частицы находятся за пределами досягаемости коллайдера. Вафа и Хекман, например, допускают такую возможность, что коллайдер может рождать полустабильные и электрически нейтральные частицы вместо тау-слептонов, которые непосредственно невозможно зарегистрировать. Если окажется, что суперпартнеры являются чуть более массивными, чем может рождать этот коллайдер, то потребуются более высокие энергии, чтобы выявить их и, следовательно, придется долго ждать нового прибора, который, в конце концов, заменит Большой адронный коллайдер.

Рис. 12.2. Эксперименты на Большом адронном коллайдере в лаборатории ЦЕРНа в Женеве могут обнаружить признаки дополнительных измерений или существования суперсимметричных частиц. Здесь показана аппаратура для эксперимента с детектором ATLAS (любезно предоставлено ЦЕРНом)


Есть небольшой шанс, что Большой адронный коллайдер сможет обнаружить более прямое и менее сомнительное доказательство существования дополнительных измерений, предсказываемых теорией струн. В экспериментах, уже запланированных на этой установке, исследователи будут искать частицы с признаками дополнительных измерений там, откуда они родом, — так называемые частицы Калуцы-Клейна. Суть идеи заключается в том, что осцилляции в измерениях высокого порядка могут проявляться в виде частиц в нашем четырехмерном мире. Мы можем увидеть или остатки распада частиц Калуцы-Клейна или, может быть, даже признаки частиц, исчезающих из нашего мира вместе с энергией и переходящих в более многомерные области.

Невидимое движение в дополнительных измерениях сообщит частице импульс и кинетическую энергию, поэтому ожидается, что частицы Калуцы-Клейна будут тяжелее, чем их медленные четырехмерные коллеги. В качестве примера можно привести гравитоны Калуцы-Клейна. Они будут выглядеть как обычные гравитоны, будучи частицами-переносчиками гравитационного взаимодействия, только они будут тяжелее за счет дополнительного импульса. Один из способов выделить такие гравитоны среди огромного моря других частиц, рождаемых коллайдером, — обратить внимание не только на массу частицы, но и на ее спин. Фермионы, такие как электроны, имеют определенный угловой момент, который мы квалифицируем как спин-1/2. Бозоны, такие как фотоны и глюоны, имеют чуть больший угловой момент, квалифицируемый как спин-1. Любые частицы, у которых на коллайдере будет обнаружен спин-2, вероятно, являются гравитонами Калуцы-Клейна.

Такое открытие будет иметь большое значение, так как физики не только поймают первый проблеск долгожданной частицы, но и получат убедительное доказательство существования самих дополнительных измерений. Обнаружение существования, по крайней мере, одного дополнительного измерения является потрясающим открытием само по себе, но Шую и его коллегам хотелось пойти дальше и получить подсказки, указывающие на геометрию этого дополнительного пространства. В 2008 году в статье, написанной совместно с Ундервудом, Девином Уолкером из Калифорнийского университета Беркли и Катериной Журек из Висконсинского университета, Шуй и его команда обнаружили, что небольшое изменение в форме дополнительных измерений вызывает огромные — от 50% до 100% — изменения, как в массе, так и в характере взаимодействия гравитонов Калуцы-Клейна. «Когда мы чуть-чуть изменили геометрию, числа изменились кардинально», — замечает Андервуд.[245]

Хотя анализ, выполненный Шуем с сотрудниками, далек от того, чтобы делать выводы о форме внутреннего пространства или уточнять геометрию Калаби-Яу, он дает некоторую надежду использовать данные экспериментов, чтобы «сократить класс разрешенных форм до небольшого диапазона». «Секрет нашего успеха лежит в кросс-корреляции между разными типами экспериментов в космологии и физике высоких энергий», — говорит Шиу.[246]

Масса частиц, регистрируемых на Большом адронном коллайдере, также даст нам намеки на размер дополнительных измерений. Дело в том, что для частиц это проход в многомерную область, и чем меньше эти области, тем тяжелее будут частицы. Вы можете спросить, сколько энергии необходимо для прогулки по проходу. Вероятно, немного. Но что, если проход окажется не коротким, но очень узким? Тогда проход через туннель выльется в борьбу за каждый дюйм пути, сопровождаемый, без сомнения, проклятиями и обещаниями, и конечно, большей затратой энергии. Вот примерно то, что здесь происходит, а говоря техническим языком, все сводится к принципу неопределенности Гейзенберга, который гласит, что импульс частицы обратно пропорционален точности измерения ее местоположения. Иначе говоря, если волна или частица зажаты в очень, очень крошечном пространстве, где ее положение ограничено очень узкими границами, то она будет иметь огромный импульс и соответственно большую массу. И наоборот, если дополнительные измерения огромны, то волна или частица будет иметь больше места для движения и соответственно обладать меньшим импульсом и обнаружить их будет легче.

Однако здесь скрыта ловушка: Большой адронный коллайдер зафиксирует такие вещи, как гравитоны Калуцы-Клейна, только если эти частицы много, много легче, чем предполагалось, а это говорит о том, что или дополнительные размерности чрезвычайно искривлены, или они должны быть намного больше планковского масштаба, традиционно принятого в теории струн. Например, в модели искривления Рандалла-Сандрама пространство с дополнительными измерениями ограничено двумя бранами, между которыми находится свернутое пространство-время. На одной бране — высокоэнергетической, гравитация сильная; на другой бране — низкоэнергетической, гравитация слабая. Вследствие такого расположения масса и энергия изменяются радикально в зависимости от положения пространства по отношению к этим двум бранам. Это означает, что массу элементарных частиц, которую мы обычно рассматривали в пределах планковской шкалы (порядка 1028 электрон-вольт), придется «перемасштабировать» до более близкого диапазона, то есть до 1012 электрон-вольт, или 1 тераэлектронвольта, что уже соответствует диапазону энергий, с которыми работает коллайдер.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Теория струн и скрытые измерения Вселенной"

Книги похожие на "Теория струн и скрытые измерения Вселенной" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Шинтан Яу

Шинтан Яу - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Шинтан Яу - Теория струн и скрытые измерения Вселенной"

Отзывы читателей о книге "Теория струн и скрытые измерения Вселенной", комментарии и мнения людей о произведении.

  1. Мне очень интересно подробнее узнать о "теории струн "
А что Вы думаете о книге? Оставьте Ваш отзыв.