» » » » Шинтан Яу - Теория струн и скрытые измерения Вселенной


Авторские права

Шинтан Яу - Теория струн и скрытые измерения Вселенной

Здесь можно скачать бесплатно "Шинтан Яу - Теория струн и скрытые измерения Вселенной" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Питер, год 2012. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Шинтан Яу - Теория струн и скрытые измерения Вселенной
Рейтинг:
Название:
Теория струн и скрытые измерения Вселенной
Автор:
Издательство:
Питер
Год:
2012
ISBN:
978-5-459-00938-5
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Теория струн и скрытые измерения Вселенной"

Описание и краткое содержание "Теория струн и скрытые измерения Вселенной" читать бесплатно онлайн.



Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.

Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.






Кроме того, в первой статье Грина и Плессера, посвященной зеркальной симметрии, была выдвинута ключевая идея о том, что взаимодействия Юкавы можно представить при помощи двух различных математических формул, одна из которых будет описывать исходное многообразие, а вторая — его зеркальную пару. Первая из этих формул, включающая в себя число рациональных кривых различных степеней, которые можно было обнаружить на многообразии, по словам Грина, была просто «кошмарной». Со второй формулой, зависящей от формы многообразия в более общем виде, работать было намного проще. Однако так как обе формулы описывали один и тот же физический объект, они должны быть эквивалентными — подобно словам «кот» и «cat», которые имеют различный вид, но описывают одно и то же пушистое существо. Статья Грина и Плессера содержала уравнение, из которого напрямую следовала эквивалентность этих двух столь различных формул.

Рис. 7.6. Выдающимся достижением геометрии XIX века стало доказательство математиками Артуром Кэли и Джорджем Сэлмоном утверждения, что поверхность третьего порядка, приведенная на рисунке, содержит ровно 27 прямых. Герман Шуберт впоследствии обобщил этот результат, получивший название теоремы Кэли-Сэлмона (изображение предоставлено 3D-XplorMath Consortium)

Рис. 7.7. Подсчет числа прямых или кривых на поверхности является обычной задачей алгебраической и нумеративной геометрии. Чтобы лучше понять, что подразумевается под числом прямых на поверхности, рассмотрим приведенный на рисунке дважды линейчатый гиперболоид как поверхность, полностью состоящую из прямых. Он называется дважды линейчатым, поскольку через каждую его точку проходят две различные прямые линии. Подобная поверхность плохо подходит для нумеративной геометрии по причине бесконечного числа прямых, которые можно на ней провести (фотография Карена Шаффнера, математический отдел Аризонского университета)

Рис. 7.8. Задача Аполлония, одна из наиболее известных задач в геометрии, посвящена вопросу о числе способов, которыми можно нарисовать окружность, касательную к трем заданным. Постановка задачи и первое решение приписывается греческому математику Аполлонию Пергскому (приблизительно 200 год до нашей эры) На рисунке приведены восемь решений этой задачи — восемь различных касательных окружностей. Спустя две тысячи лет математик Герман Шуберт рассмотрел аналогичную задачу в трехмерном пространстве, показав, что построить сферу, касательную к четырем заданным сферам, можно шестнадцатью способами


«Даже если у тебя есть уравнение, в достоверности которого с формальной точки зрения ты не сомневаешься, решить его с достаточной точностью и получить ответ в виде числа может оказаться сложной задачей, — замечает Грин. — У нас было уравнение, но не было инструментов для получения определенного числа. Канделас и его сотрудники разработали эти инструменты, что стало крупнейшим достижением, оказавшим огромное влияние на геометрию».[104]

Работа Грина и Плессера наглядно иллюстрирует всю мощь зеркальной симметрии. Теперь можно было не утруждать себя подсчетом числа кривых в пространстве Калаби-Яу, поскольку, проведя совершенно другое вычисление — с виду не имеющее ничего общего с работой по подсчету кривых, — можно было получить тот же ответ. Когда Канделас и его коллеги применили этот подход к расчету количества кривых третьего порядка на трехмерной поверхности пятого порядка, они получили число 317 206 375.

Наш интерес, однако, заключался не столько в определении количества рациональных кривых, сколько в исследовании многообразия как такового. Дело в том, что в процессе подсчета мы по сути дела перемещаемся по кривым, используя хорошо разработанные методики, до тех пор пока не проходим все пространство. В ходе этой процедуры мы фактически определяем пространство — неважно, будет это трехмерная поверхность пятого порядка или какое-либо другое многообразие, — в терминах данных кривых.

Результатом всего вышесказанного стало второе рождение уже порядком подзабытой области геометрии. По словам Марка Гросса, математика из Калифорнийского университета, идея использования зеркальной симметрии для решения задач нумеративной геометрии, впервые предложенная Канделасом и его сотрудниками, привела к возрождению целой дисциплины. «К тому времени эта область исследований почти полностью исчерпала себя, — говорит Гросс. — Когда все старые задачи были решены, ученые занялись перепроверкой чисел Шуберта при помощи современных вычислительных технологий, но это занятие едва ли можно было назвать увлекательным. И вдруг, как гром с ясного неба, Канделас заявил о разработке ряда новых методов, выходящих далеко за пределы того, что мог представить себе Шуберт».[105] Физики многое заимствуют из математики, а вот математики, прежде чем заимствовать из физики метод Канделаса, прежде всего потребовали более детального обоснования его строгости.

Случайно, приблизительно в это же время — в мае 1991 года, если быть точным, — я организовал конференцию в Исследовательском институте математических наук Беркли, для того чтобы математики и физики получили возможность поговорить о зеркальной симметрии. И. М. Зингер, один из основателей института, изначально выбрал для конференции другую тему, но мне удалось его переубедить, упомянув некоторые из новых открытий в области зеркальной симметрии, которые представлялись мне особенно захватывающими. Зингер как раз незадолго до этого посетил лекцию Брайана Грина и потому легко согласился со мной и попросил возглавить это мероприятие.

Я возлагал большие надежды на то, что эта конференция позволит преодолеть барьеры между родственными областями исследований, возникающие из-за разницы в языке и накопленных знаниях. Во время конференции Канделас представил результаты, полученные им для проблемы Шуберта, но оказалось, что его число заметно отличалось от числа, полученного гораздо более строгим путем двумя норвежскими математиками Гейром Эллингсрудом и Штейном Арилдом Штремме (их ответ был — 2 682 549 425). В силу присущей им заносчивости, математики, работающие в области алгебраической геометрии, обвинили физиков в том, что те допустили ошибку. Прежде всего, по словам математика из Кайзерслаутернского университета Андреаса Газмана, «математики просто не понимали того, чем занимались физики, поскольку они [физики] использовали совершенно другие методы — не существующие в математике и далеко не всегда строго доказанные»[106].

Канделас и Грин были весьма озабочены возможностью допущенной ими ошибки, но им никак не удавалось понять, где именно они встали на неверный путь. В то время я много общался с обоими, особенно с Грином, и меня также занимал вопрос, где именно в процессе интегрирования по бесконечномерному пространству, которое нужно было затем свести к конечной размерности, могла быть допущена какая-либо неточность. Конечно, в ходе математических преобразований неоднократно приходилось сталкиваться с проблемой выбора, причем ни один из вариантов нельзя было считать совершенным. Однако хотя все это ставило Канделаса и Грина в несколько неловкое положение, нам не удавалось обнаружить какую-либо погрешность в их рассуждении, основанном скорее на физических идеях, нежели на строгом математическом доказательстве. Более того, несмотря на критику со стороны математиков, они остались верны зеркальной симметрии.

Все прояснилось приблизительно через месяц, когда Эллингсруд и Штремме обнаружили ошибку в своей компьютерной программе. Исправив ее, они получили тот же ответ, что и Канделас с соавторами. Норвежские математики проявили высокую степень научной честности, запустив заново свою программу, перепроверив результаты и обнародовав свою ошибку. На их месте многие постарались бы скрывать найденную ошибку как можно дольше, но Эллингсруд и Штремме сделали противоположное, моментально проинформировав научное сообщество как об ошибке, так и о ее исправлении.

Для зеркальной симметрии заявление, сделанное Эллингсрудом и Штремме, стало настоящим моментом истины. Оно не только привело к дальнейшему развитию этой области, но и помогло изменить отношение к самой идее. Если до этого многие математики считали зеркальную симметрию полной чушью, то теперь пришлось признать, что им все же есть чему поучиться у физиков. Показательно, что математик Дэвид Моррисон, в то время работавший в Университете Дьюка, на встрече в Беркли был одним из наиболее ярых критиков. Однако после описанных событий его мнение полностью изменилось, и вскоре ему даже удалось внести существенный вклад в концепцию зеркальной симметрии, теорию струн и теорию переходов с изменением топологии для многообразий Калаби-Яу.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Теория струн и скрытые измерения Вселенной"

Книги похожие на "Теория струн и скрытые измерения Вселенной" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Шинтан Яу

Шинтан Яу - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Шинтан Яу - Теория струн и скрытые измерения Вселенной"

Отзывы читателей о книге "Теория струн и скрытые измерения Вселенной", комментарии и мнения людей о произведении.

  1. Мне очень интересно подробнее узнать о "теории струн "
А что Вы думаете о книге? Оставьте Ваш отзыв.