» » » » Шинтан Яу - Теория струн и скрытые измерения Вселенной


Авторские права

Шинтан Яу - Теория струн и скрытые измерения Вселенной

Здесь можно скачать бесплатно "Шинтан Яу - Теория струн и скрытые измерения Вселенной" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Питер, год 2012. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Шинтан Яу - Теория струн и скрытые измерения Вселенной
Рейтинг:
Название:
Теория струн и скрытые измерения Вселенной
Автор:
Издательство:
Питер
Год:
2012
ISBN:
978-5-459-00938-5
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Теория струн и скрытые измерения Вселенной"

Описание и краткое содержание "Теория струн и скрытые измерения Вселенной" читать бесплатно онлайн.



Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.

Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.






На плоской, евклидовой поверхности все очень просто: нужно только сохранять направление и длину каждого вектора. На искривленных поверхностях и для произвольных многообразий условие постоянства длин и углов сохраняется, хотя и несколько усложняется по сравнению с евклидовым пространством.

Особенность кэлерова многообразия состоит в следующем: если при помощи операции параллельного переноса переместить вектор V из точки P в точку Q вдоль заданной траектории, то результатом этого перемещения станет новый вектор W1. Применив к вектору операцию поворота на 90 градусов (J-операцию), мы получим новый вектор JW1. С тем же успехом можно сначала применить к вектору V операцию поворота (J-операцию), в результате которой возникнет новый вектор JV, по-прежнему начинающийся в точке P. Если после этого параллельно перенести вектор JV в точку Q и полученный вектор назвать W2, то в случае кэлерова многообразия векторы JW1 и W2 будут идентичны вне зависимости от пути перемещения между точками P и Q. Можно сказать, что на кэлеровом многообразии J-операция инвариантна относительно параллельного переноса. Для комплексных многообразий в общем случае это не так. Можно сформулировать это условие и в другом виде: на кэлеровом многообразии параллельный перенос вектора с последующим его поворотом аналогичен повороту вектора с последующим параллельным переносом. Эти две операции коммутируют — поэтому не имеет значения, в каком порядке их выполнять. В общем случае это не так, как наглядно объяснил Роберт Грин: «Открыть дверь и затем выйти из дому — это далеко не то же самое, что выйти из дому и лишь затем открыть дверь».

Основная идея параллельного переноса проиллюстрирована на рис. 4.3 для поверхности с двумя вещественными измерениями или одним комплексным (поверхность с большим числом измерений нарисовать проблематично). Впрочем, этот случай скорее тривиален, поскольку число возможных направлений поворота ограничено числом два: влево и вправо.

Однако уже для двух комплексных измерений (четырех вещественных) число векторов определенной длины, перпендикулярных любому заданному вектору, бесконечно велико. Эти векторы образуют касательное пространство, которое в двухмерном случае можно представить как огромный кусок фанеры, лежащий на верхушке баскетбольного мяча. В этом случае знание того, что необходимый нам вектор перпендикулярен некоему другому, известному нам, едва ли заметно упростит его нахождение — если только многообразие, которому он принадлежит, не является кэлеровым. Для кэлерова многообразия, зная вектор, полученный при повороте на 90 градусов (J-преобразовании) в одной из точек многообразия, можно точно предсказать величину и направление подобных векторов в любой другой точке, поскольку параллельный перенос дает возможность переместить этот вектор из первой точки во вторую.

Рис. 4.3. На первом рисунке изображен параллельный перенос вектора V из точки P в точку Q, в которой этот вектор приобретает новое имя W1. Затем при помощи так называемой J-операции вектор W1 поворачивается на 90 градусов. Повернутый вектор носит название JW1. На втором рисунке J-операция проводится над вектором V в точке P, результатом которой становится новый вектор (повернутый на 90 градусов) — JV. При помощи параллельного переноса этот вектор перемещают в точку Q, где он получает новое имя W2. В обоих случаях результирующие векторы будут одинаковы. Это один из признаков кэлерова многообразия, а именно независимость результата от последовательности, в которой выполняются операции поворота и параллельного переноса. Эти две операции коммутируют, то есть порядок их выполнения не имеет значения


Существует еще один способ показать, что эта простая операция (поворот на 90 градусов, или J-преобразование) тесно связана с симметрией. Этот тип симметрии называется четырехкратной симметрией, поскольку при каждом J-преобразовании вектор поворачивается на 90 градусов. В результате четырех последовательных преобразований вектор повернется на 360 градусов и, пройдя полный круг, вернется в начальную точку. Иначе говоря, два J-преобразования аналогичны умножению на -1. Четыре преобразования приведут к умножению вектора на единицу (-1×-1=1). В результате мы вернемся к тому, с чего начали.

Очевидно, что данная симметрия применима только к касательному пространству в определенной точке, но для того чтобы это свойство было действительно полезным, четырехкратная симметрия должна сохраняться и при перемещении по всему пространству. Эта согласованность является важной особенностью внутренней симметрии. Представьте себе стрелку компаса, которая характеризуется двухкратной симметрией в том смысле, что она может указывать только в двух направлениях — северном и южном. Если при вращении компаса в пространстве его стрелка будет беспорядочным образом указывать то на север, то на юг без какой-либо причины, можно сделать вывод о том, что пространство, в котором вы находитесь, либо не обладает соответствующей симметрией, либо не имеет заметного магнитного поля (либо вам пора покупать новый компас). Аналогично, если J-операция дает разные результаты в зависимости от положения точки на многообразии и направления поворота, то это означает, что в многообразии отсутствуют порядок и предсказуемость, обеспечиваемые симметрией. Более того, вы можете быть уверены, что это многообразие не кэлерово.

Внутренняя симметрия, во многом определяющая кэлеровы многообразия, ограничена касательным пространством к данным многообразиям. Это может иметь определенные преимущества, поскольку на касательном пространстве результат любой операции не зависит от выбора системы координат. Именно это свойство — независимость результатов операции от выбора системы координат — представляет чрезвычайный интерес как с геометрической, так и с физической точки зрения. Проще говоря, если результаты зависят от выбора ориентации осей или начала координат, то для нас они неинтересны.

Рис. 4.4. На рисунке проиллюстрирован простой и весьма очевидный факт: квадрат имеет четырехкратную симметрию относительно его центра. Иными словами, повернув квадрат четыре раза на 90 градусов, мы получим исходную фигуру. Поскольку J-операция представляет собой поворот на 90 градусов, она также имеет четырехкратную симметрию, и четыре поворота приведут к исходному объекту. Формально говоря, J-операция действует только на касательные векторы, поэтому она — весьма грубый аналог вращения фигуры, подобной квадрату. J-преобразование, как обсуждается в тексте, является вещественным аналогом умножения на i. Умножение некого числа на i четыре раза равноценно умножению его на единицу, и оно, подобно проведенной четыре раза J-операции, неизбежно приведет к тому числу, с которого мы начали


Требование внутренней симметрии наложило на представленный Калаби математический мир ряд дополнительных ограничений, значительно упростив его и сделав проблему доказательства его существования потенциально разрешимой. Впрочем, Калаби не обратил внимания на некоторые другие следствия из его теории; на самом деле внутренняя симметрия, наличие которой он предположил для своих многообразий, является особой разновидностью суперсимметрии, что особенно важно для теории струн.

Последние два фрагмента нашей мозаики — классы Черна и кривизна Риччи — возникли из попыток геометров обобщить одномерные римановы поверхности на случай многих измерений и затем попытаться математически описать различия между ними. Это привело к возникновению важной теоремы, относящейся к компактным римановым поверхностям, — как, впрочем, и ко всем компактным поверхностям, не имеющим границ. Определение границы в топологии дается скорее на интуитивном уровне: диск имеет границу, или четко определенный край, тогда как сфера границы не имеет. На поверхности сферы можно сколь угодно долго двигаться в любом направлении, никогда не достигая никакой границы и даже не приближаясь к ней.

Теорема, сформулированная в XIX веке Карлом Фридрихом Гауссом и французским математиком Пьером Бонне, связала геометрию поверхности с ее топологией.

Согласно формуле Гаусса-Бонне, общая гауссова кривизна подобных поверхностей равна произведению эйлеровой характеристики поверхности на . Эйлерова характеристика, обозначаемая греческой буквой χ («хи»), в свою очередь равна 2–2g, где g — это род (число «дырок» или «ручек» на данной поверхности). К примеру, эйлерова характеристика двухмерной сферы, не имеющей дырок, будет равна 2. Эйлер вывел отдельную формулу для нахождения эйлеровых характеристик любого многогранника: χ=V-E+F, где V — число вершин, E — число ребер, a F — число граней. Для тетраэдра χ=4-6+4=2, точно так же, как и для сферы. Для куба, имеющего 8 вершин, 12 ребер и 6 граней, χ=8-12+6=2 — снова то же, что и для сферы. Причина того, что эти топологически идентичные (хотя и геометрически различные) объекты имеют одинаковую величину заключается в том, что эйлеровы характеристики всецело определяются топологией объекта и не зависят от его геометрии. Эйлерова характеристика χ стала первым из основных топологических инвариантов пространства — величин, остающихся неизменными — инвариантными — для пространств, имеющих совершенно различный внешний вид, подобно являющимся топологически эквивалентными сфере, тетраэдру и кубу.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Теория струн и скрытые измерения Вселенной"

Книги похожие на "Теория струн и скрытые измерения Вселенной" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Шинтан Яу

Шинтан Яу - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Шинтан Яу - Теория струн и скрытые измерения Вселенной"

Отзывы читателей о книге "Теория струн и скрытые измерения Вселенной", комментарии и мнения людей о произведении.

  1. Мне очень интересно подробнее узнать о "теории струн "
А что Вы думаете о книге? Оставьте Ваш отзыв.