Шинтан Яу - Теория струн и скрытые измерения Вселенной

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Теория струн и скрытые измерения Вселенной"
Описание и краткое содержание "Теория струн и скрытые измерения Вселенной" читать бесплатно онлайн.
Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.
Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.
Когда космологическая постоянная мала, а ускоренное расширение происходит относительно медленно, что имеет место в современном мире, горизонт находится очень далеко. Вот почему объем этого пространства такой большой. И наоборот, если космологическая постоянная велика, а Вселенная расширяется с огромной скоростью, то горизонт (или критическая точка) может находиться очень близко — чуть ли не под рукой (в буквальном смысле), и объем соответственно будет мал. «Если вы засунете вашу руку слишком далеко в такое пространство, — объясняет Линде, — то быстрое расширение может оторвать вам ее».[217]
Хотя энтропия пространства де Ситтера коррелирует с объемом, правильнее будет сказать, что она коррелирует с площадью поверхности горизонта событий, которая определяется расстоянием (точнее, квадратом расстояния) до горизонта. Фактически, можно использовать то же обоснование и формулу Бекенштайна-Хокинга, что мы применяли к черным дырам в восьмой главе, то есть энтропия де Ситтера пропорциональна площади горизонта, деленной на четыре ньютоновские гравитационные постоянные G. Расстояние до горизонта, или, формально, — квадрат расстояния, в свою очередь зависит от космологической постоянной: чем больше значение космологической постоянной, тем меньше расстояние. Поскольку энтропия соизмерима с квадратом расстояния, а квадрат расстояния обратно пропорционален космологической постоянной, то энтропия также будет обратно пропорциональна космологической постоянной. По Хокингу, верхний предел для космологической постоянной в нашей Вселенной составляет 10-120 в «безразмерных единицах», которые используют физики.[218] Число 10-120 является грубым приближением, его не следует воспринимать как точную цифру. Энтропия, будучи обратно пропорциональной космологической постоянной, получается чрезвычайно большой — примерно 10120, как упоминалось выше. Энтропия по определению равна не числу состояний, а натуральному логарифму числа состояний. Поэтому количество состояний фактически равно eэнтропия. Вернемся к графику на рис. 11.1, где число возможных состояний в нашей Вселенной с небольшой космологической постоянной, которая (Вселенная) представлена локальным минимумом на кривой, составляет e(10¹²º).
Предположим, что поверхность горной вершины, с которой объект скатывается вниз к измерениям бесконечного радиуса, является таким исключительным местом, где существует только одно состояние, которое доставит вас точно на вершину. Поэтому вероятность посадки в этом конкретном месте среди всех других вероятностей исчезающе мала — порядка 1/e(10¹²º). Вот почему время туннелирования через барьер является настолько большим, что мы даже не можем назвать его астрономическим.
Еще одно замечание: на рис. 11.2 мы представили сценарий декомпактификации, при котором наша Вселенная туннелирует до состояния с более низким значением энергии вакуума (или меньшей космологической постоянной), делая промежуточную остановку на ландшафте во время своего путешествия к конечной перестройке — бесконечным радиусам измерений. Но можем ли мы, туннелируя, отправиться обратно, к месту с более высокой энергией вакуума? Безусловно, катиться под гору намного проще. Можно показать это следующим рассуждением. Предположим, что имеется потенциальный минимум в точке A и отдельный минимум в точке В, причем точка А расположена выше, чем В, а следовательно, имеет большую энергию вакуума. Поскольку в точке А более высокая энергия, то сильнее и гравитация, и пространство в ней будет иметь более высокую кривизну. А если мы будем рассматривать это пространство как сферу, ее радиус будет меньше, поскольку сферы меньших размеров имеют большую кривизну, чем сферы больших размеров. Поскольку в точке В более низкая энергия, то гравитация будет слабее. Следовательно, пространство вокруг нее будет иметь меньшую кривизну. А если мы будем рассматривать это пространство как сферу, ее радиус будет больше, и поэтому она будет обладать меньшей кривизной. Мы проиллюстрировали некоторые аспекты этой идеи на рис. 11.3 (используя для А и В ящики, а не сферы), чтобы показать, что объект, вероятнее всего, путешествует вниз к ландшафту с более низкой энергий — от А к В, чем вверх. Для большей наглядности можно соединить два ящика тонкой трубкой. Эти два ящика со временем придут в равновесие и будут иметь одинаковую концентрацию, или плотность, газов, а количество молекул, переходящих из А в В, будет равно количеству молекул, переходящих из В в А.
Рис. 11.3. На этом рисунке сделана попытка показать, почему легче «туннелировать вниз» от А к В (см. рис. 11.2), а не «туннелировать вверх» от В к А. Аналогия, представленная здесь, показывает, что обнаружить молекулу в В более вероятно, чем в А, просто потому, что количество молекул в В гораздо больше, чем в А
Однако поскольку В намного больше, чем А, в нем намного больше молекул. Поэтому вероятность перехода любой отдельной молекулы из А в В намного больше, чем вероятность перехода отдельной молекулы из В в А. Аналогично, вероятность появления пузыря, который перенесет вас в место с низкой энергией на ландшафте, существенно выше, чем вероятность возникновения пузыря, который перенесет вас в обратном направлении (в гору), как и любая молекула с большей вероятностью совершит переход из ящика А в В.
В 1890 году Анри Пуанкаре опубликовал свою так называемую теорему о возвращении, которая утверждает, что любая система с фиксированным объемом и энергией, которую можно описать с помощью статистической механики, обладает характеристическим временем возвращения в исходное состояние, равным eэнтропия системы. Идея состоит в том, что такая система обладает конечным числом состояний — конечным количеством положений частиц и скоростей. Если вы будете стартовать с определенного состояния и ждать достаточно долго, то, в конце концов, достигнете всех состояний, подобно тому как частица или молекула в нашем ящике будет «брести, не разбирая дороги», отскакивая от стенок и двигаясь хаотически, со временем побывает в каждом из всех возможных мест ящика. Выражаясь научным языком, мы будем говорить не о возможных местах ящика, а о возможных состояниях в «фазовом пространстве». Тогда время, необходимое пространству-времени для декомпактификации, равно времени возвращения Пуанкаре — то есть eэнтропия, или e(10¹²º) лет. Но, по мнению Клебана, в этом доказательстве существует одно слабое звено. «Мы еще не имеем статистическо-механического описания пространства де Ситтера». При этом мы априори предполагаем (что может оказаться правдой, а может, и нет), что такое описание возможно.[219]
В настоящее время нам нечего добавить по этому вопросу, да и немногое сделано в этом направлении, за исключением, возможно, уточнения вычислений, оценок и повторной проверки нашей логики. Неудивительно, что немногие исследователи склонны работать в этом направлении и дальше, поскольку мы говорим о чрезвычайно теоретических событиях в сценариях, зависящих от модели, которые еще нельзя проверить, и сама возможность проверки появится не скоро. Работа в этом направлении вряд ли гарантирует предоставление грантов или получение молодыми исследователями признания у своих старших коллег и, что важнее, не гарантирует карьерного роста.
Гиддингс, уделявший этому предмету больше внимания, чем другие ученые, не впадает в отчаяние от явных признаков картины Судного дня. «Если брать положительную сторону, — пишет он в своей статье “The Fate of Four Dimensions” (“Судьба четырех измерений”), — то распад может привести к состоянию, которое не разделяет конечную судьбу бесконечного разрежения», как это происходило бы в постоянно расширяющейся Вселенной, наделенной положительной космологической постоянной, которая действительно постоянна. «Можно искать утешение как в относительно долгой жизни нашей сегодняшней четырехмерной Вселенной, так и в том, что в перспективе ее распад приведет к состоянию, способному поддерживать интересные структуры, возможно, даже жизнь, хотя и сильно отличающуюся от нашей сегодняшней жизни».[220]
Как и Гиддингса, меня особо не беспокоит судьба наших четырех, шести или даже десяти измерений. Как я уже упоминал ранее, исследования в этой области вызывают интерес и наводят на размышления, но они все же сильно гипотетические. Пока мы не получим данные астрономических наблюдений, которые подтвердят теорию, или, по крайней мере, не получим практических стратегий для проверки этих сценариев, я буду считать их больше научной фантастикой, чем наукой. Поэтому лучше не тратить время, беспокоясь о декомпактификации, а подумать о способах подтверждения существования дополнительных размерностей. Успех в этой области, на мой взгляд, будет более чем достаточен, чтобы перевесить потенциальный недостаток различных сценариев распада, которые могут, в конце концов, привести нашу Вселенную к плачевному концу — ни один из других финалов, если правильно подойти к ним, не станет выглядеть лучше.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Теория струн и скрытые измерения Вселенной"
Книги похожие на "Теория струн и скрытые измерения Вселенной" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Шинтан Яу - Теория струн и скрытые измерения Вселенной"
Отзывы читателей о книге "Теория струн и скрытые измерения Вселенной", комментарии и мнения людей о произведении.