Нурали Латыпов - Инженерная эвристика

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Инженерная эвристика"
Описание и краткое содержание "Инженерная эвристика" читать бесплатно онлайн.
В книге представлены классические и новейшие — от эвристических до логических — методы активизации инженерно-технического мышления. Авторы демонстрируют междисциплинарный подход к решению изобретательских задач и тренингу интеллекта на основе универсальных языков. Последовательность в решении научно-технических проблем достигается методом выявления и разрешения противоречий. При этом формулировка проблемы в виде парадокса оказывается сильнейшим стимулом для развития творческой мысли.
Книга содержит более 170 вопросов и задач, на которых заинтересованный читатель может проверить качественный уровень собственного мышления, а в случае затруднений — обратиться к приводимым решениям и ответам. Многие из этих задач озвучены авторами в 2011–2012 гг. в ходе семинаров и тренингов в рамках проекта ООО «ЛУКОЙЛ-Инжиниринг» «Академия молодого инноватора», на интеллектуальных состязаниях молодых специалистов компании.
Рекомендуется инженерам, преподавателям и учащимся инженерно-технических и естественнонаучных специальностей вузов, инновационно ориентированным молодым специалистам производственного и исследовательского комплексов, а также всем читателям, заинтересованным в формировании у себя эффективного, продуктивного, действенного мышления, достижении нового интеллектуального уровня развития.
А наполнение всей этой абстрактной конструкции конкретным смыслом (из физики, из жизни) — это уже другой вопрос.
В современной математике принято различать язык и метаязык (язык над языком). Как сказано выше, аксиомы вводят определённый язык, с которым дальше можно работать, составлять на этом языке какие-то фразы, предложения. Но чтобы сформулировать эти аксиомы, мы уже должны на каком-то языке разговаривать. В данном случае это естественный язык — русский (мы), немецкий (Гильберт), древнегреческий (Евклид) и т. д.
Метаязык — это язык, с помощью которого вводится интересующий нас язык (язык геометрии). В дальнейшем понятия из языка и из метаязыка не должны смешиваться. Сформулировали по-русски аксиомы геометрии — а дальше, работая с геометрией, мы используем только понятия и правила языка геометрии. Именно в этом смысле математика — наука строгая и однозначная.
Так вот «отношение» в данном контексте — это слово из метаязыка. Иначе говоря, в данном случае оно не принадлежит самой математике (геометрии), а принадлежит русскому языку.
Хотя известно, что есть раздел математики «исчисление отношений». Здесь отношение становится уже математическим объектом. Если можно так выразиться, исчисление отношений занимается отношениями между отношениями!
С. Ёлкин. Скажите, если я начну вводить понятия геометрии на таукитянском языке, то вы поймёте и сможете развивать геометрию? Не будем затягивать, ответ очевиден… Нет!
То есть вам для формулировки строгой и однозначной математики нужен хоть какой-то, но язык, а он не может быть точным и строгим по своей природе. Отсюда считаю, что доказал утверждение Жубера об исчезновении аксиом. Либо аксиомы неоднозначны и нестроги, либо они лишены содержания. А вещь без содержания ничто.
Очень похоже на теорему К. Гёделя: «Либо математика не полна, либо противоречива». Для доказательства очевидной вещи Курт Гёдель написал том страниц на триста, а в конце концов всё равно использовал парадоксальное утверждение: «я (теорема) недоказуема».
А. Трушечкин. Метод математики: отгородиться от нестрогого естественного языка, создав (на этом языке) специфический узкий язык со строгими правилами и запретив дальнейшее примешивание нашего языка к математическим рассуждениям.
Жубер, с которого начался диспут, в сущности, сказал не то, что наш язык неоднозначен (это очевидно), а то, что если бы он был однозначным, мы бы лишились не только поэзии и эстетики, но даже и аксиом. Вопрос, как я понимаю, в том, смогли ли бы мы сформулировать аксиомы, если бы наш язык был однозначным? Например, писать стихи точно не смогли бы. Моё предположение: если б наш язык был однозначным, в аксиомах бы, возможно, не было нужды. Поэтому бы их и не было.
Гёделю как раз и потребовалось триста страниц, чтобы математически сформулировать теорему, утверждающую о собственной недоказуемости, доказать, что такая теорема в самом деле существует.
Пока мы пришли к выводу, что для формулировки аксиом, мы уже должны обладать нашим языком, который по своей природе неточный (иначе не было бы нужды в математическом подходе). И есть разница в утверждениях: «аксиомы неоднозначны и нестроги» и «аксиомы сформулированы на языке, который в принципе (!) допускает неоднозначность и нестрогость».
Если русский язык допускает нестрогость в принципе, это не значит, что она присутствует в любой фразе. Когда я говорю: «Я иду обедать», то здесь всё однозначно (по крайней мере, если есть соглашение о контексте). Также и с аксиомами: они вводят понятия, с которыми мы будем работать, и правила работы с ними. Сформулированы они однозначно, несмотря на то, что в других ситуациях язык может быть неоднозначным. Скажем так, русский (и любой другой естественный) язык — очень богатый, он обычно работает в «неоднозначном режиме», но допускает и специальный «однозначный режим». Математика — это и есть этот «однозначный режим».
С. Ёлкин. Что такое «специальный режим для русского языка»? Ни в одной книжке по лингвистике я не обнаружил какого-то особенного специального режима для русского или иного языков.
Уменьшение количества толкований слова или предложения или фразы задаётся, как вы сказали, контекстом. Контекст[103] — штука плохо формализуемая, в противном случае задача машинного перевода была бы решена.
Например, фраза, которая долго висела на рекламных баннерах: «Время есть». Что это? «Время идти принимать пищу» или «ещё осталось немного времени»? Я задал контекст, уточняя в вопросе эту фразу. Но как я это сделал? Если изменить фразу: «Время поесть», то ясно, что пора покушать. Казалось бы, неоднозначность исчезла! Как бы не так! Кому пора, где пора, почему пора и т. д. поесть? Ответа нет. Нет и однозначности. Теперь к аксиоме. Через одну точку можно провести бесконечное множество прямых. Где эта точка? Что за прямые? Кто может осуществить эту возможность и провести бесконечное множество прямых? Да и про какую геометрию вы вообще говорите? У одного Гильберта аксиом геометрии, если мне не изменяет память, двенадцать! Значит, эта аксиома допустима в очень большом числе возможных геометрий!
А. Трушечкин. Когда мы формулируем аксиомы, мы не интересуемся этими вопросами. Вот есть точка, а есть прямая, между ними существует определённое отношение, при обращении с этими тремя объектами надо соблюдать определённые правила. Сами правила сформулированы чётко. В этом смысле аксиомы чёткие и однозначные.
А откуда они взялись, что они означают, кто их может осуществить, где это всё находится и т. д. и т. п. — от этих вопросов мы абстрагируемся. От вопроса, какие ещё могут быть аксиомы, мы пока тоже абстрагировались. Сформулировали правила, с ними и работаем, а что можно было ещё массу разных правил придумать — это понятно. Но мы работаем с данными правилами.
Ещё пара замечаний. Можно провести аналогию между аксиоматическими системами и правилами, например, шахмат или шашек. Правила сформулированы на естественном языке, но тем не менее, правила однозначны.
Спрашивать: «Где эта точка? Что за прямые? Кто может осуществить эту возможность и провести бесконечное множество прямых?» — это всё равно, что в шахматах спрашивать: «Как мы прокормим коня?» А ещё лучше — целого слона! Мы не имеем права задавать вопросы, выходящие за пределы тех объектов и отношений между ними, которые зафиксированы в правилах.
В доказательство того, что шахматные правила сформулированы однозначно — я ни разу не слышал, чтоб на шахматных соревнованиях возникали вопросы, как можно ходить, а как нельзя! Да, обсуждаема неоднозначность, связанная с необходимостью записывать партию. Но это неоднозначность не шахматных правил, а правил проведения шахматных турниров, эти правила относятся уже к людям, а не к фигурам. По самим же шахматным правилам, то есть по вопросам, какие ходы на доске делать можно, а какие нет, как определяется победитель, исходя из позиции на доске, двузначностей никогда не возникало.
Так же и в математике: никогда не слышал, чтобы кто-то интерпретировал ту или иную аксиому двояко! Математики выясняют, является ли та или иная аксиоматика полной, непротиворечивой, независимой, разрешимой, но никогда не слышал, чтобы они обсуждали, как надо понимать какую-то отдельную аксиому! Так что аксиомы сформулированы однозначно.
А то, что существует множество геометрий — это аналог тому, что существует множество вариантов игры в шашки (включая «чапаевцев», когда шашки сбиваются с поля щелчком). Шашки и доска одни и те же (если не считать стоклеточных шашек), а правила могут быть разные. Но если мы зафиксировали правила, по которым мы играем, то всё однозначно.
С. Ёлкин. Это глубоко неверное представление! Именно глубоко! Такого рода заблуждения превращаются в препятствия на пути развития и техники и науки.
Сначала о шахматах. Как бы вы ни формулировали правила, если вы их дадите человеку который никогда в шахматы не играл, как это мы наблюдаем у детей, впервые севшими за доску, он будет натыкаться на всякие не описанные случаи. И тогда мы ему говорим: «Так не ходят». То же происходит, когда вводят новые правила, как в случае с блицтурнирами.
Итак. Что же определяет однозначность? Отвечаю.
Во-первых, наличие вполне конкретного в каждом конкретном случае объекта: шахматной доски и фигур (среди них нет живого слона, поэтому вопрос о его кормлении не обсуждается).
Во-вторых, конечно, наличие правил игры.
В-третьих, это практика игры, то есть практика применения правил очень многими игроками и судьями.
Всё вместе и есть тот самый контекст. Только бесконечный (или практически очень большой) контекст даёт нам однозначность, он позволяет отбросить варианты, все, кроме одного — правильного. Только всё вместе даёт однозначность поведения в игре и однозначность правоприменения.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Инженерная эвристика"
Книги похожие на "Инженерная эвристика" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Нурали Латыпов - Инженерная эвристика"
Отзывы читателей о книге "Инженерная эвристика", комментарии и мнения людей о произведении.