Моисей Радовский - Александр Попов

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Александр Попов"
Описание и краткое содержание "Александр Попов" читать бесплатно онлайн.
Имя А. С. Попова (1859–1905) золотыми буквами вписано в историю русской и мировой науки. Результатом его многолетних опытов в области радиосвязи стало создание в 1895 году первого в мире радиоприемника. Приоритет Попова в этой области оспаривается на Западе, где создателями радио считают других ученых — Г. Маркони, О. Лоджа, Н. Теслу. Прояснить причины этого, восстановить справедливость в отношении русского изобретателя, показать пути, приведшие его к эпохальному открытию, помогает самая полная на сегодняшний день биография Попова, написанная известным историком науки М. И. Радовским. Настоящее издание книги, выходящее к 150-летию со дня рождения ученого, актуализировано и дополнено новыми материалами.
Издано при финансовой поддержке Федерального агентства по печати и массовым коммуникациям в рамках Федеральной целевой программы «КУЛЬТУРА РОССИИ».
Труды Максвелла касались многих областей физики, механики и астрономии. Главные же его работы составляют исследования по электромагнетизму и кинетической теории газов. Продолжая начатое Фарадеем дело[441], математически обрабатывая его идеи, Максвелл пришел к далекоидущим выводам, выдвинув электромагнитную теорию света (1864), которая является одним из самых великих достижений науки XIX века. Считая свет явлением электромагнитным, Максвелл математически доказал, что электрические волны должны распространяться со скоростью, равной отношению электромагнитной единицы к электростатической единице зарядов. Как известно, эта величина действительно совпадает со скоростью распространения электромагнитных колебаний и почти равна скорости света (300 тысяч километров в секунду). Различия между скоростями света и распространения электромагнитной энергии отсутствуют, если скорости измерены в безвоздушном пространстве.
Но и глубочайшие теоретические соображения Максвелла, содержавшие в себе гениальное предвидение дальнейшего прогресса науки на долгие годы, также не сразу получили признание. Его современникам они казались слишком отвлеченными и даже искусственными. Необходимо было не только подвергнуть их экспериментальной проверке, но и сделать наглядными, доходчивыми, чтобы те практические выводы из них, которые могли в первую очередь получать техническое применение, сделались понятными. Прежде всего нужно было пересмотреть укоренившиеся представления о протекании электричества по проводам и о тех явлениях в окружающем провод пространстве, которые обнаруживаются при прерывании в нем тока. Нужно было составить себе наглядную картину электромагнитных процессов, происходящих в проводе и вблизи него. Дальнейший вклад первостепенного значения внес в учение об электромагнитных колебаниях современник Максвелла Уильям Томсон. Он по-новому рассмотрел процесс протекания электрического тока по проводам и дал обоснование для точной теории электрических колебаний в сложных цепях.
Электрическая цепь из емкости, индуктивности и сопротивления, которая была им подробно изучена и применена в ряде практических случаев, получила специальное название «контур Томсона», а электромагнитные колебания, в нем возникающие, — «томсоновских колебаний». Та картина протекания электрического тока в колебательном контуре, которая создается в нашем воображении на основании работ Томсона, легла в основу всех дальнейших экспериментов с электрическими колебаниями и волнами. Замечательным выводом из работ Томсона является теория резонанса тока и напряжения, связанных с накоплением электромагнитной энергии в диэлектриках конденсаторов и в магнитном поле индуктивностей, из которых составляется резонансный контур. Такой резонансный (колебательный) контур по аналогии с подобными акустическими резонаторами стали называть резонатором. В приближении творческой мысли к представлению о возможности осуществления беспроводной связи не менее важными, чем работы Томсона, являются замечательные эксперименты с колебательным разрядом конденсатора, выполненные В. Федцерсеном[442]. Они наглядно показали, что электрическая искра может служить источником для создания электрических колебаний. Это был отправной этап для разработки всей высокочастотной аппаратуры, которой далее пользовались и предшественники А. С. Попова, и он сам. Возбуждением электрических колебаний искрой воспользовались в своих опытах и Герц, и Лодж, и многие другие. Даже после смерти Попова искровой разряд долгое время применялся в аппаратах беспроводной связи.
Важный дальнейший шаг в направлении углубления теории Максвелла сделан был в 1874 году русским профессором Н. А. Умовым[443], который математически рассчитал мощность энергии разряда в пространстве и наметил основные физические свойства явлений, связанных с распространением электромагнитных волн. Насколько важное значение придавали работе Умова, можно судить по тому, что в настоящее время вектор, характеризующий величину мощности распространяющейся электромагнитной энергии, во всем мире называют вектором Умова — Пойнтинга (последний занимался этими вопросами позднее).
Для радиотехники исключительное значение имели выводы Максвелла, относящиеся к распространению электромагнитных волн. В реальности существования их ученый мир убедился после экспериментальных работ ученика Г. Гельмгольца[444] Генриха Рудольфа Герца[445], осуществленных через десятилетие после смерти Максвелла, так и не дождавшегося всеобщего признания своих взглядов.
Глубоко убежденный в справедливости воззрений Фарадея и Максвелла, Герц поставил перед собой задачу экспериментально доказать реальное существование электромагнитных волн в окружающем разряд пространстве. Он воспользовался электрической искрой в сочетании с контуром или «вибратором» высокой добротности для возбуждения электромагнитных волн в окружающем пространстве и явлением резонанса в приемном колебательном контуре для обнаружения электромагнитных волн в месте их приема. Герц установил, что электромагнитные волны действительно подчиняются тем же законам (отражения, преломления и поляризации), что и световые волны. Один из одареннейших экспериментаторов, каких только знает история естествознания (не забудем, что он умер, не дожив до тридцати семи лет), Герц выполнил эти основные экспериментальные исследования и описал их в своей работе, озаглавленной «О весьма быстрых электрических колебаниях»[446].
Электромагнитные волны, возбуждаемые Герцем при его опытах, нельзя было обнаружить за пределами лаборатории или сада Боннского университета, где эти опыты проводились. Для опытов на более далекие расстояния резонатор Герца с вторичной искрой был слишком малочувствителен. Тем не менее Герц мог сознательно управлять электромагнитными волнами и экспериментально доказать тождественность их со свойствами света. Естественно, что логическим продолжением работ должны были стать опыты по беспроводной связи. Над решением этой задачи трудились уже многие изобретатели и до Герца.
До недавнего времени, говоря о практическом значении работ Герца, обычно ссылались на его письмо к инженеру Губеру, который запросил Герца, нельзя ли применять открытые им волны для беспроводной связи. Ответ Герца гласил: «Силовые магнитные линии распространяются подобно лучам, так же как и электростатические силовые линии, только тогда, когда их колебания достаточно быстры; в этом случае оба типа силовых линий не отделимы друг от друга и лучи или волны, о которых идет речь в моих исследованиях, могли с одинаковым правом быть названы как магнитными, так и электрическими. Но колебания трансформатора или телефона намного более медленны. Предположим, что у нас 1000 колебаний в секунду, что уже представляется довольно высоким числом колебаний; этому соответствовала бы в эфире волна длиной в 300 км; допущенные расстояния применяемых зеркал должны были бы иметь размеры того же порядка. Если бы Вы были в состоянии получить вогнутые зеркала размером в материк, то Вы могли бы отлично поставить опыты, которые Вы имеете в виду. Но с обычными зеркалами практически сделать ничего нельзя, и Вы не сможете обнаружить ни малейшего действия. Так, по крайней мере, я думаю».
На основании приведенных строк делалось заключение, что Герц вообще отрицал возможность использования электромагнитных волн для беспроводной связи. Но в литературе давно уже отмечалось, что подобное утверждение должно быть отнесено к «списку неточных информации», на что указывал академик Л. И. Мандельштам. Академик Б. А. Введенский, выступая на торжественном заседании, посвященном столетию со дня рождения Генриха Герца, заявил: «Я целиком присоединяюсь к тем, которые считают основанный на этом письме (Губеру. — М. Р.) рассказ о том, что якобы Герц отрицал самую возможность беспроволочной связи (или хотя бы только радиотелефонии), всего лишь необоснованной легендой, вовсе не вытекающей из содержания письма Герца. В этом письме речь идет скорее о передаче энергии без проводов, и именно с частотой переменного тока. Герц не изобрел радио, т. е. не осуществил технического, практического воплощения открытых им электромагнитных волн по той причине, по какой Фарадей не основал электротехники, или, скажем, Беккерель, Мария Склодовская-Кюри и Пьер Кюри или, например, Резерфорд не создали аппаратуры для практического использования атомной энергии: есть пределы даже для самой высокой гениальности: принцип разделения труда справедлив и в области науки и техники. Практическое претворение великих открытий в конкретные технические установки, непосредственно способные служить нуждам человечества, весьма часто и даже обычно осуществляется не теми, кем непосредственно сделано открытие».
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Александр Попов"
Книги похожие на "Александр Попов" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Моисей Радовский - Александр Попов"
Отзывы читателей о книге "Александр Попов", комментарии и мнения людей о произведении.