» » » » Марк Перельман - Наблюдения и озарения или Как физики выявляют законы природы


Авторские права

Марк Перельман - Наблюдения и озарения или Как физики выявляют законы природы

Здесь можно скачать бесплатно "Марк Перельман - Наблюдения и озарения или Как физики выявляют законы природы" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Книжный дом «ЛИБРОКОМ», год 2012. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Марк Перельман - Наблюдения и озарения или Как физики выявляют законы природы
Рейтинг:
Название:
Наблюдения и озарения или Как физики выявляют законы природы
Издательство:
Книжный дом «ЛИБРОКОМ»
Год:
2012
ISBN:
978-5-397-02592-8
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Наблюдения и озарения или Как физики выявляют законы природы"

Описание и краткое содержание "Наблюдения и озарения или Как физики выявляют законы природы" читать бесплатно онлайн.



Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.

Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.

Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой. Поэтому книга не просто захватывает — она позволяет почувствовать себя посвященными в великую тайну. Вместе с автором вы будете восхищаться красотой мироздания и удивляться неожиданным озарениям, которые помогли эту красоту раскрыть.

Первая часть книги, «От Аристотеля до Николы Теслы», расскажет о пути развития науки, начиная с утверждения Аристотеля «Природа не терпит пустоты» и эпициклов Птолемея, и до гелиоцентрической системы Коперника и Галилея и великих уравнений Максвелла. Читатель проделает этот огромный путь рука об руку с гениями, жившими задолго до нас.

«От кванта до темной материи» — вторая часть книги. Она рассказывает о вещах, которые мы не можем увидеть, не можем понять с точки зрения обыденной, бытовой ЛОГИКИ' о принципе относительности, замедлении времени, квантовании энергии, принципе неопределенности, черных дырах и темной материи. История загадочной, сложной и увлекательной современной физики раскроется перед читателем.

Итак, вперед — совершать открытия вместе с гениями!






В проводящих средах, где происходят колебания и движения зарядов, такие явления можно рассматривать как процессы, связанные с возникновением, движением и взаимодействием квазичастиц «плазмонов». Так, например, можно рассмотреть взаимодействие звуковых или тепловых волн с зарядами как взаимодействие фононов и плазмонов. Вводится и квазичастица «магнон», описывающая волны, связанные с колебаниями спинов — от их величины, упорядоченности и направленности зависят магнитные поля в средах. Дырки в кристаллах (места отсутствующих положительных ионов), которые могут «путешествовать» по нему за счет последовательного перехода в дырку соседних частиц, могут связаться с электроном и образовать так называемый экситон — еще одну квазичастицу и т. д.

Таким образом, вместо того чтобы рассматривать слабые возбуждения в среде, состоящей из огромного количества атомов, молекул, ионов, электронов, рассматривают сравнительно небольшое количество элементарных возбуждений-квазичастиц. (Такой подход, очевидно, может быть наиболее плодотворным при низких абсолютных температурах, когда возбуждения слабы, т. е. квазичастиц мало.)

2. Лэмбовский сдвиг

Знаменитое уравнение Дирака (1928) описывало все известные свойства электрона: его волновые свойства, электрический заряд, спин, магнитный момент и релятивистскую зависимость массы от скорости. В качестве основы значительной части квантовой механики уравнение Дирака позволило с большой точностью предсказать энергетические уровни атома водорода (уровни других атомов рассчитываются с гораздо меньшей точностью).

В атоме водорода единственный электрон движется вокруг ядра по одной из серии орбит, на каждой из которых он обладает точно определяемой энергией (вообще говоря, у каждого уровня, кроме основного, существует ширина, т. е. некоторый разброс энергий, но он тоже должен быть строго определенным). Для перехода электрона на более высокую орбиту атом должен поглотить фотон, энергия которого в точности соответствует разности энергий между орбитами. А при переходе электрона на более низкую орбиту атом испускает фотон соответствующей энергии. Такие переходы порождают спектр атомарного водорода, состоящий из отдельных четких линий.

Обычно возбужденное (или высокоэнергетическое) состояние атома быстро распадается, время распада обратно пропорционально ширине уровня — атом переходит, испуская излучение, в состояние с более низкой энергией. Наиболее сильно возбужденные состояния распадаются с испусканием одного фотона примерно за одну стотысячную секунды. Но существуют и метастабильные, т. е. «почти стабильные» состояния с гораздо большим временем жизни: так, второе возбужденное состояние атома водорода «живет» примерно в 700 млн раз дольше, поскольку его распад требует испускания двух фотонов. При этом из уравнения Дирака выводилась эквивалентность двух особых уровней, один из которых метастабилен: эти уровни соответствуют различным состояниям, имеют весьма различные времена жизни, но тем не менее должны обладать точно одинаковой энергией.

Уиллис Ю. Лэмб (1913–2008) — физик-теоретик, много работал по микроволновым излучениям. Как он рассказывал, задуманный эксперимент никто не хотел выполнять, и чтобы отвязаться, ему выделили аппаратуру и практиканта для работы. Человек очень сдержанный, близорукий и неловкий, Лэмб ограничивался лишь указаниями, изредка ему «разрешалось» списывать результаты с осциллографа. Известие о присуждении премии ничуть не повлияло на его поведение: он как всегда спокойно провел со студентами плановые занятия и только потом вышел к давно ожидавшим репортерам.

Но еще в 1934–1939 гг. появились замечания о том, что между ними есть какая-то разница. Эксперименты были, однако, не очень надежными — разница энергий столь мала, что ее не удавалось точно промерить, а война прервала дальнейшую работу.

Прояснение этого вопроса сыграло ключевую роль в развитии квантовой электродинамики (КЭД), основы всех теорий квантовых полей, и связано оно в основном с экспериментом, задуманным Лэмбом и проведенным им совместно со студентом Робертом К. Ризерфордом в 1947 г.

В эксперименте Лэмба приготовленный пучок атомов, находящихся именно в этом долгоживущем метастабильном состоянии, переводился при облучении в микроволновом (сверхвысокочастотном, СВЧ) диапазоне в короткоживущее состояние — работы Лэмба в военное время по радиолокационной технике позволили сконструировать нужное для этого эксперимента специальное оборудование. Используемая аппаратура позволяла с большой точностью менять частоту облучения в диапазоне около 1000 МГц, а количество распадающихся атомов (уже перешедших на другой уровень) показывало вероятность процессов.

Результаты Лэмба были сенсационными: уравнение Дирака неточно описывает уровни энергии атома водорода, между двумя исследуемыми уровнями существует разница — она составляет порядка одной стотысячной энергии уровня, но это вопрос принципиальный — что-то мы не понимаем в самых основах теории!

В тот же период Поликарп Куш (1911–1993), также работавший в военные годы над радиолокационной техникой, измерял в атомных пучках магнитные свойства электрона в атоме водорода. Результаты его чрезвычайно скрупулезных измерений магнитного момента электрона тоже вступили в противоречие с результатами расчетов по теории Дирака — примерно на 0,1 % — и стали одним из стимулов развития КЭД. Поэтому он разделил Нобелевскую премию 1955 г. с Лэмбом.

3. Квантовая электродинамика

Начиная с 1927 г. П. Дирак, В. Гейзенберг и В. Паули пытались согласовать квантовую механику с теорией относительности, связать свойства электронов с параметрами электромагнитного излучения. Согласно теории Дирака, фотон может превратиться в пару электрон-позитрон, а такая пара может, в свою очередь, аннигилировать, превращаясь в один или несколько фотонов. Совокупность таких расчетов и составляла квантовую электродинамику.

Как мы уже упоминали, соседние электроны могут обмениваться виртуальными фотонами, перебрасываясь ими, как мячиками (еще раз повторим, по принципу неопределенностей, они могут на определенное время терять или приобретать добавочную энергию, т. е. массу). Сида реакции, испытываемая каждым электроном, когда он испускает или поглощает фотон, проявляется как электромагнитное отталкивание электронов друг от друга. Именно такие виртуальные излучения-приобретения недостатка-избытка массы и создают шубу, одеяние частицы.

Если попробовать подсчитывать энергию этих виртуальных фотонов по принципу неопределенности Гейзенберга, то получается некоторая несообразность: виртуальные фотоны могут иметь любую энергию, только при этом сокращается длительность их «существования». Следовательно, по мере сближения взаимодействующих электронов все более поднимается верхняя граница энергии виртуальных фотонов, которыми они обмениваются, правда, из-за кулоновского отталкивания они не могут подойти друг к другу вплотную.

Но что произойдет при этом с самовоздействием электрона, т. е. с учетом виртуальных фотонов, которые он сам испускает и сам же поглощает? В этом случае промежуток между актами испускания и перепоглошения, время существования виртуального фотона, может приближаться к нулю и, следовательно, допустимая энергия становится неограниченной, может стремиться к бесконечности. Получается, что непрерывное испускание и самопоглощение таких виртуальных фотонов должно будет придать электрону бесконечную массу!

Эти виртуальные фотоны могут также превращаться в виртуальные пары электрон-позитрон, которые могут расходиться на некоторое расстояние, и тогда нужно будет признать, что по мере приближения к электрону можно зафиксировать любой, даже, возможно, и бесконечный электрический заряд!

Выводы, безусловно, абсурдные: величины массы и заряда электронов хорошо известны и конечны. Тем не менее, теорией, приводящей к таким несуразицам, продолжали пользоваться, поскольку ее недостатки должны проявляться, казалось бы, только в экспериментах с большими энергиями, которым соответствуют малые расстояния, а для большинства измерений, осуществляемых в то время, теория Дирака давала верные предсказания. Но эксперименты Лэмба и Куша ясно показали, что какие-то недостатки КЭД проявляются уже в наблюдаемых интервалах энергии — положение стало нетерпимым даже при сравнительно малых энергиях.

Г. Бете первым рассчитал сдвиг Лэмба при произвольно ограниченных энергиях виртуальных фотонов, испускаемых электроном, т. е. фактически отбрасывая возникающие бесконечности, но это не сулило полного объяснения новых эффектов: нужны были более оригинальные идеи.

С.Томонага[52] и Дж. Швингер[53] не стали отбрасывать эти бесконечности, а решили (независимо друг от друга) использовать их для пересмотра структуры собственного поля частиц. Фактически они использовали именно понятие виртуального облака, или «шубы», окружающей любую частицу, о которой мы говорили выше. Они показали, что измеряемая масса электрона должна состоять из двух частей: истинной, или собственной, массы изолированного от всех взаимодействий (голого) электрона и массы, связанной с «шубой», облаком виртуальных фотонов (и других виртуальных частиц), которые электрон непрерывно испускает и перепоглощает. Если это облако виртуальных фотонов обладает бесконечной энергией, то отсюда следует, что собственная масса (или энергия) «голого» электрона тоже должна быть бесконечной, но отрицательной. У наблюдаемого электрона разделить эти две массы невозможно, а они, складываясь, почти полностью друг друга компенсируют — остается только небольшая измеряемая масса. Затем при аналогичном подходе к собственному заряду электрона Томонага и Швингер постулировали бесконечный отрицательный собственный заряд, который притягивает облако положительно заряженных виртуальных частиц. Бесконечно большой положительный заряд виртуального облака экранирует почти полностью, за исключением небольшего остатка, отрицательный собственный заряд.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Наблюдения и озарения или Как физики выявляют законы природы"

Книги похожие на "Наблюдения и озарения или Как физики выявляют законы природы" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Марк Перельман

Марк Перельман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Марк Перельман - Наблюдения и озарения или Как физики выявляют законы природы"

Отзывы читателей о книге "Наблюдения и озарения или Как физики выявляют законы природы", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.