Марк Перельман - Наблюдения и озарения или Как физики выявляют законы природы

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Наблюдения и озарения или Как физики выявляют законы природы"
Описание и краткое содержание "Наблюдения и озарения или Как физики выявляют законы природы" читать бесплатно онлайн.
Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.
Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.
Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой. Поэтому книга не просто захватывает — она позволяет почувствовать себя посвященными в великую тайну. Вместе с автором вы будете восхищаться красотой мироздания и удивляться неожиданным озарениям, которые помогли эту красоту раскрыть.
Первая часть книги, «От Аристотеля до Николы Теслы», расскажет о пути развития науки, начиная с утверждения Аристотеля «Природа не терпит пустоты» и эпициклов Птолемея, и до гелиоцентрической системы Коперника и Галилея и великих уравнений Максвелла. Читатель проделает этот огромный путь рука об руку с гениями, жившими задолго до нас.
«От кванта до темной материи» — вторая часть книги. Она рассказывает о вещах, которые мы не можем увидеть, не можем понять с точки зрения обыденной, бытовой ЛОГИКИ' о принципе относительности, замедлении времени, квантовании энергии, принципе неопределенности, черных дырах и темной материи. История загадочной, сложной и увлекательной современной физики раскроется перед читателем.
Итак, вперед — совершать открытия вместе с гениями!
Сейчас можно только сказать, что область ближнего поля и ее возможности в микроскопии пока еще недостаточно изучены. Подождем новых исследований и изобретений…
Глава 2
Изобретение транзистора
Зарождение радиотехники потребовало создания детектора, т. е. устройства, пропускающего электрический ток только в одном направлении. Дело в том, что обычная радиопередача идет на волнах высокой (несущей) частоты, амплитуда или фаза которых меняются (модулируются) гораздо более низкой звуковой частотой. Поэтому ток, генерируемый на антенне приемника, является высокочастотным, и нужно сперва выделить из него колебания одного направления, а затем уже можно будет по одной линии пустить колебания высокой частоты (несущей), а по другой — полезный сигнал.
В первых радиоприемниках, их называли детекторными, такое выделение осуществлял обычно кристалл галенита (свинцового блеска) — его припаивали к одному концу цепи, а ко второму присоединяли иголку («кошачий ус») и, двигая ею по кристаллу, искали «точку», то есть место, в котором электроны могли проходить только в одну сторону, и тогда в наушниках возникал долгожданный шум, а иногда даже речь и музыка[46].
Однако ламповые диоды, основанные на эффекте Эдисона, о которых мы говорили в главе «Электротехника и радиотехника», были надежнее, а звуковые колебания могли в таких приемниках усиливаться триодами. Казалось, что ламповая электроника одержала бесспорную и окончательную победу.
Но со временем стали ясны и ее недостатки: лампы были громоздкими, срок их службы — сравнительно коротким, а для подогрева катодов требовался дополнительный расход энергии, кроме того, стеклянные баллоны были хрупкими.
По-видимому, первыми взялись за создание нового типа электроники Уильям Шокли (1910–1989), Уолтер Браттейн (1902–1987) и Джон Бардин (1908–1991). Они и разделили Нобелевскую премию 1956 г. (Вторую Нобелевскую премию по физике Бардин получил в 1972 г. за теорию сверхпроводимости.)
Успех этой группы был обусловлен тем, что все трое начинали свою научную работу под руководством выдающихся ученых, т. е. прошли хорошую школу, и смотрели на исследуемые явления с разных, но, как оказалось, дополняющих друг друга точек зрения.
Шокли учился в знаменитом Массачусетском технологическом институте (МТИ) и начинал с расчетов поведения электронов в кристаллах, а затем стал работать в лаборатории телефонной компании «Белл» под руководством К. Дж. Дэвиссона, нобелевского лауреата, открывшего волновые свойства электронов. Первым заданием Шокли было проектирование электронного умножителя — особого рода электронной лампы, действующей как усилитель. Затем он возвращается к физике твердого тела и уже в 1939 г. выдвигает план разработки твердотельных усилителей, прообразов будущих транзисторов, для замены электронных ламп. Этот проект, правда, оказался в то время неосуществимым, но цель работы была ясна.
Бардин учился в Принстонском университете под руководством Ю. Вигнера, а диссертацию написал по силам притяжения, удерживающим электроны внутри металла. Затем в Гарварде он работал с Дж. Г. Ван Флеком и П. У. Бриджменом над проблемами атомной связи и электрической проводимости в металлах — его учителями были три будущих нобелевских лауреата.
В те же годы Браттейн изучает такие явления, как влияние адсорбционных пленок на эмиссию электронов горячими поверхностями, электронные столкновения в парах ртути, занимается магнитометрами, инфракрасными явлениями и эталонами частоты.
В годы войны все трое работали над проблемами радиолокации и радиосвязи, что также добавило им опыта в области, где они потом прославились. В 1945 г. они возвращаются в «Лаборатории Белл» на работу в программе научных исследований по физике твердого тела и возобновляют начатые перед войной исследования полупроводников. В этом содружестве Шокли определил первоначальное направление работ, Бардин разрабатывал теорию явлений, Браттейн экспериментально определял свойства и поведение исследуемых материалов и приборов.
Любопытно отметить, что если Шокли и Бардин были потомственными горожанами, то Браттейн был из села, и, хотя жизнь на ранчо на лоне природы ему нравилась, фермерский труд ом ненавидел. «Хождение в пыли за тремя лошадьми и бороной — вот что сделало из меня физика», — скажет он впоследствии.
Для всего дальнейшего нам нужно коротко рассказать о свойствах полупроводников. Их электропроводность является промежуточной между электропроводностью хороших проводников (к числу которых относится большинство металлов) и изоляторов и сильно изменяется в зависимости от характера и концентрации примесей в материале, а также от температуры. К этому времени уже появились квантовые расчеты полупроводников, но эти теории еще не были адекватно проверены экспериментами.
В совершенном кристалле, как принято говорить, связи между атомами «насыщены» или «заполнены». Электроны трудно оторвать, они с трудом перемещаются, что приводит к очень высокому электрическому сопротивлению — это изолятор. Однако вкрапления чужеродных атомов, которые не вполне подходят к данной структуре, приводят либо к появлению избыточных электронов, способных участвовать в электрическом токе, либо к дефициту электронов, известному как «дырки», — электропроводность возрастает.
Причина роста электропроводности заключается в следующем. Если в чистый кристалл ввести примеси в виде атомов, нарушающих регулярную кристаллическую структуру и могущих отдать на один электрон больше, то будет создан кристалл n-типа (от negative — отрицательный) с избытком электронов. Если же вводить атомы, отдающие связям на один электрон меньше, чем атомы решетки, создается кристалл р-типа (от positive — положительный). Так как электрон несет отрицательный заряд, то незаполненное электронное состояние ведет себя как положительный заряд такой же величины и при этом может двигаться: когда соседний электрон перемещается «вперед», чтобы заполнить дырку, он оставляет позади себя новую дырку, поэтому создается впечатление, будто дырка движется назад, хотя, в среднем, и не с такой скоростью, как электроны, и в противоположном направлении (до работ этой группы вклад дырочного тока в полный ток недооценивался).
Вначале Шокли намеревался моделировать основной принцип устройства электронной лампы: приложить электрическое поле поперек полупроводника и с его помощью управлять прохождением электрического тока вдоль образца. Но хотя расчеты показывали, что такое поле должно приводить к усилению тока, получить практические результаты не удавалось. (Заметим, что такое устройство удалось осуществить, пока в лабораторной модели, только в 2010 г. с развитием нанотехнологии.)
Тогда Бардин предположил, что электроны оказываются запертыми в поверхностном слое, и этот слой не пропускает поле внутрь полупроводника, экранирует его. Пришлось взяться за исследование поверхностных эффектов — это и помогло понять сложное поведение полупроводниковых устройств.
В 1947 г. Бардин и Браттейн достигли первого успеха, построив полупроводниковый усилитель, или транзистор (от английских слов transfer — перенос, плюс resistor, от лат. resisto — сопротивляюсь). Это был блок германия (полупроводника n-типа) с электродом на широкой грани (база), а на противоположной грани были два близко расположенных золотых точечных контакта («кошачьи усы»). К одному контакту (эмиттеру) прикладывалось небольшое положительное напряжение относительно базы и большое отрицательное напряжение относительно второго контакта (коллектора). Сигнал, подаваемый на эмиттер вместе с постоянным смещением, передавался со значительным усилением в цепь коллектора. В основе действия транзистора лежит внедрение дырок в германий через контакт-эмиттер и их движения к контакт-коллектору, где дырки усиливают коллекторный ток.
Шокли предложил заменить неустойчивые точечные контакты на выпрямляющие переходы между областями р- и n-типа в том же кристалле (1950). Такой плоскостный транзистор состоял из тонкой р-области, заключенной между двумя n-областями (все они с независимыми внешними контактами), работал он надежнее предшествующей модели и был проще в изготовлении. А дальнейшее усовершенствование методов выращивания, очистки и обработки кристаллов кремния позволило осуществить давнюю идею Шокли о создании транзистора на основе полевых эффектов.
Ныне этот тип транзисторов, которые легко сделать миниатюрными, наиболее широко используется в электронных устройствах. Оказалось, что их не нужно изготовлять и выпускать по-отдельности — можно производить непосредственно на кристаллах вместе с остальными деталями электронных схем, это и есть современные чипы.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Наблюдения и озарения или Как физики выявляют законы природы"
Книги похожие на "Наблюдения и озарения или Как физики выявляют законы природы" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Марк Перельман - Наблюдения и озарения или Как физики выявляют законы природы"
Отзывы читателей о книге "Наблюдения и озарения или Как физики выявляют законы природы", комментарии и мнения людей о произведении.