Марк Перельман - Наблюдения и озарения или Как физики выявляют законы природы

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Наблюдения и озарения или Как физики выявляют законы природы"
Описание и краткое содержание "Наблюдения и озарения или Как физики выявляют законы природы" читать бесплатно онлайн.
Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.
Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.
Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой. Поэтому книга не просто захватывает — она позволяет почувствовать себя посвященными в великую тайну. Вместе с автором вы будете восхищаться красотой мироздания и удивляться неожиданным озарениям, которые помогли эту красоту раскрыть.
Первая часть книги, «От Аристотеля до Николы Теслы», расскажет о пути развития науки, начиная с утверждения Аристотеля «Природа не терпит пустоты» и эпициклов Птолемея, и до гелиоцентрической системы Коперника и Галилея и великих уравнений Максвелла. Читатель проделает этот огромный путь рука об руку с гениями, жившими задолго до нас.
«От кванта до темной материи» — вторая часть книги. Она рассказывает о вещах, которые мы не можем увидеть, не можем понять с точки зрения обыденной, бытовой ЛОГИКИ' о принципе относительности, замедлении времени, квантовании энергии, принципе неопределенности, черных дырах и темной материи. История загадочной, сложной и увлекательной современной физики раскроется перед читателем.
Итак, вперед — совершать открытия вместе с гениями!
Заметим, что позже конструкции водородных бомб были усовершенствованы, габариты их уменьшены настолько, что они устанавливаются на ракетах. Разработаны также так называемые нейтронные бомбы, не содержащие урановой оболочки и поэтому не создающие долгоживущего радиационного фона, они, вместо соединений лития, содержат тритий и дейтерий, могут использоваться в артиллерии и решать тактические, а не стратегические задачи.
Итак, бомба должна быть эллипсоидом, в фокусах которого находятся запал и объект, нужно только поставить между ними перегородку, задерживающую более ранний подход прямых лучей. Идея завершена, нужно всего лишь ее как следует рассчитать и воплотить в металл, как говорят конструкторы.
В 1950 г. в Москву на имя Сталина поступило с Сахалина письмо от солдата Олега Александровича Лаврентьева, в котором были изложены основные идеи создания водородной бомбы. И хотя у автора было всего семиклассное образование, его идеи были оригинальны, а некоторые даже предвосхищали дальнейшие разработки. 0. Лаврентьев был вызван в Москву, его зачислили на физический факультет, предоставили кураторов по всем предметам, вход в лаборатории, специальную стипендию, но большим ученым он так и не стал, оставшись своеобразной психологической загадкой.
Трудности, которые при этом возникают, конечно, громадные, нужно еще много и много думать, делать и переделывать; над воплощением проекта работает множество людей, физиков — теоретиков и экспериментаторов, химиков, взрывотехников, инженеров, техников (их называют, на немецкий лад, файн-мастерами, т. е. тонкими, особо ловкими) и т. д. Но 22 ноября 1955 г. первая в мире водородная бомба сброшена с самолета — испытания прошли успешно!
Еще до того США испытали 1 ноября 1952 г. на атолле Эниветок неподъемное расположенное на земле термоядерное устройство, сконструированное Э. Теллером. Аналогичное устройство Сахарова было испытано в СССР 12 августа 1953 г. Самая мощная по сей день бомба в истории, разработанная под руководством Сахарова, эквивалентная 50 Мт ТНТ (миллионам тонн тринитротолуола), была взорвана в атмосфере 30 октября 1961 г.[36].
4. Управляемые термоядерные реакцииРеакции ядерного синтеза обладают, по крайней мере, двумя преимуществами перед реакциями деления. Во-первых, исходными продуктами для них может служить если не водород, то дейтерий, а запасы его на Земле, в отличие от запасов урана, неограниченны. Во-вторых, продукты синтеза, в отличие от радиоактивных отходов деления, слабо или совсем не радиоактивны, т. е. исчезает не решенная до сих пор проблема их захоронения.
Поэтому одновременно с разработкой оружия начались исследования возможностей термоядерной энергетики. Первая же проблема, которая возникла, состояла в том, как и где хранить вещество, точнее, плазму заряженных частиц, разогретых до температур, приближающихся к миллионам градусов. (Напомним, что самое термостойкое вещество на Земле остается твердым примерно до 5000. градусов.)
И это была первая проблема, которую еще до работы над бомбой решил А. Д. Сахаров: нужен сосуд, в котором нет материальных стенок, но который не выпустит наружу заряженные частицы. Эту задачу могут выполнить только силовые линии Фарадея — нужно так подобрать магнитные поля, чтобы они заворачивали назад все приближающие к ним заряды — вот вам и сосуд без стенок! Такие «сосуды» назвали магнитными бутылками. Но в любой бутылке есть еще горлышко и дно — через них заряды могут убегать…
Тогда, предложил Сахаров, сделаем сосуд без горлышка и дна — завернем его в тор, т. е. в бублик. Такой ядерный реактор назвали токамак (сокращение от «Тороидальная КАмера с МАгнитной Катушкой», одно из немногих русских слов, вошедших — наряду со словом «спутник» — во все языки мира).
Схожие устройства создаются во многих лабораториях. И если в 1965 г. токамак работал не более одной десятимиллионной секунды, то уже к 1991 г. длительность его работы на смеси дейтерий-тритий дошла до двух секунд, а температура в нем достигла 200 миллионов градусов. Физики уверены, что они в этих исследованиях на правильном пути — нужно терпение, работа и… финансирование. (Стоимость большого токамака, который строят вместе США, Россия, Европейское сообщество и Япония, — порядка 10 миллиардов долларов, но перспективы столь грандиозны, что затраты могут очень быстро окупиться в случае ожидаемого успеха.)
А существуют ли другие возможности для развития термоядерной энергетики?
В 1947 г., как мы говорили, Пауэлл обнаружил в космических лучах след мезона, который затем превращался в чуть более легкую частицу, но не протон и не электрон. Пауэлл решил, что первоначальная частица — это пи-мезон, предсказанный Юкавой переносчик ядерных взаимодействий. Он, по-видимому, превращался в несколько более легкий мю-мезон, тот самый, который еще в 1937 г. нашел К. Андерсон. Поэтому возник вопрос: как они соотносятся друг с другом? (Доказательство справедливости его предположения о распаде пи-мезона на мю-мезон и нейтрино было установлено позже.) Поскольку вопрос оставался дискуссионным, С. Франк в том же 1947 г. опубликовал маленькую заметку о том, что, возможно, самая первая частица, найденная Пауэллом, — это все тот же мю-мезон, но севший на место электрона в атоме.
Сахаров заинтересовался этой заметкой и рассмотрел такую возможность: масса мю-мезона в 207 раз больше массы электрона, значит, радиус мю-мезоатома будет в 207 раз меньше радиуса водорода с обычным электроном на орбите. Поэтому мю-мезоатом как нейтральное образование может так близко подойти к ядру другого атома, что начнется реакция синтеза — и все это при нормальной температуре. Более того, сам мю-мезон в такой реакции не участвует, поэтому он может, сблизив два ядра, полететь дальше и снова привести к такой же реакции. Таким образом, эта частица может играть роль катализатора реакции (от греческого «катализис» — разрешение), но недолговечного — время жизни мюона длится около двух миллионных секунды. Этот процесс Сахаров назвал мю-мезонным (или мюонным) катализом, и с тех пор он интенсивно изучается: планируется, в принципе, строить специальные ускорители, так называемые мезонные фабрики, энергия для которых будет вырабатываться в ходе самой каталитической реакции.
Проблема управляемых термоядерных реакции столь важна, а решение ее столь многообещающе, что время от времени появляются сообщения об их наблюдении в самых экзотических условиях. Так, в начале 1990-х гг. два исследователя сообщили, что они наблюдают такую реакцию при накачке кристалла чистого металла палладия дейтерием: между узлами кристаллической решетки палладия как раз помещаются атомы дейтерия, и, по уверению авторов, они так сближаются, что начинается синтез гелия. К сожалению, это наблюдение не подтвердилось — возможно, авторы были вполне искренни, но у них что-то случилось с аппаратурой.
В конце 1990-х гг. появились новые сообщения. При прохождении мощной ультразвуковой волны через воду в ней, как известно, возникают пузырьки — это явление кавитации. Затем эти пузырьки схлопываются, иногда с грохотом, что говорит о сильном давлении, возникающем в них, — вот это давление, по мнению авторов статей, и приводит к термояду, следы которого они как будто наблюдали. Но и эта сенсация, увы, не подтвердилась.
Еще одна возможность, тоже впервые рассмотренная Сахаровым, — это нагрев малых количеств ядерных реагентов одновременными импульсами мощных лазеров. Лазерный термояд также продолжает исследоваться.
Глава 4
«Элементарные» частицы
Сущности не следует умножать без необходимости.
У. Оккам
Поиск исходных «кирпичиков», из которых построен весь мир, — одна из характерных черт любой цивилизации (и, согласно И. Канту, одна из антиномий чистого разума). Не вдаваясь в седую древность, можно сказать, что к концу XIX в. цель, казалось, была достигнута: мир состоит из нескольких десятков видов неизменных атомов и электромагнитного излучения (такое количество исходных атомов выглядит как-то неубедительно, но что поделаешь?). Затем появились: электрон, фотоны, превращения атомов, а позже — структуры этих самых атомов. С открытием нейтрона можно было, как снова казалось, успокоиться: есть протоны, нейтроны, электроны (и их античастицы) и кванты — этих элементарных частиц достаточно для построения всего вещества. Потом добавились пи-мезоны, обеспечивающие связи в ядрах и нейтрино — уже не так мало видов частиц, но среди них как будто ни одной излишней, ненужной…
Ах да, мы забыли о мюоне — для чего он нужен, он же явно излишен в этой утилитарной схеме?
Но с конца 1940-х гг. новые частицы посыпались как из рога изобилия, к 1980-м их можно было считать чуть ли не сотнями. С нашей антропоцентрической (т. е. ставящей во главу угла существование человека) точки зрения, это явный перебор природы. И тут стали возникать разные идеи: рассматривать одни частицы как основные, а другие как составленные из них или их возбужденные состояния, придумать схемы их классификации и взаимозависимости — т. е. как-то упорядочить все это неожиданное обилие объектов и, если не целиком, сразу, то хоть по частям, свести их к определенным типам взаимодействия или к полям с соответствующими квантами взаимодействия.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Наблюдения и озарения или Как физики выявляют законы природы"
Книги похожие на "Наблюдения и озарения или Как физики выявляют законы природы" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Марк Перельман - Наблюдения и озарения или Как физики выявляют законы природы"
Отзывы читателей о книге "Наблюдения и озарения или Как физики выявляют законы природы", комментарии и мнения людей о произведении.