» » » » Дмитрий Черкасов - Строение и законы Вселенной


Авторские права

Дмитрий Черкасов - Строение и законы Вселенной

Здесь можно скачать бесплатно "Дмитрий Черкасов - Строение и законы Вселенной" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство АСТ, год 2006. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Дмитрий Черкасов - Строение и законы Вселенной
Рейтинг:
Название:
Строение и законы Вселенной
Издательство:
АСТ
Год:
2006
ISBN:
5-17-037921-8
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Строение и законы Вселенной"

Описание и краткое содержание "Строение и законы Вселенной" читать бесплатно онлайн.



В книге сформулированы универсальные законы развития Вселенной, показан наиболее вероятный путь совершенствования человека, рассмотрены явные и пока не явные тупиковые пути развития, приведены критерии для оценки научных, технических и социальных достижений.






Почему же эти задачи получили столь высокую оценку в существующей системе научных ценностей? Здесь нам придется обратиться к изложенному в предыдущих разделах.

Как мы уже неоднократно отмечали, с самого начала развития вторичной знаковой системы понятиям цифра и счет придавалось некоторое мистическое значение вплоть до появления откровенно сакрального, тайного учения — Каббалы. Это пошло от пифагорийской и птолемеевской школ, когда отдельные закономерности нашей Вселенной были представлены в виде простых числовых зависимостей и приобрели в сознании адептов указанных учений самостоятельное значение. Явно или неявно действовал лозунг «Цифра правит миром». Это породило надежды на»«ограниченные возможности ЭВМ в области эвристики. Хотя существуют и эвристические программы, и программы, формулирующие и доказывающие новые математические теоремы, но потенциала человеческого мозга они не достигают и в обозримом будущем вряд ли достигнут. Все дело в том, что самостоятельно циркулирующая в любой, даже самой сложной системе (типа Интернета) информация не имеет внутренних критериев выживания, то есть полностью зависит от производителей элементов этой системы: например, система «равнодушна» к отключению, перезаписи и пр. Даже программы защиты информации сами по себе никаких собственных целей не преследуют и не имеют причин «защищаться» от знающего их человека-оператора. В этом-то и заключается разница между информацией в ЭВМ и информацией в биологических, сформировавшихся естественным путем живых существах. Наиболее подходящим здесь представляется словосочетание воля к жизни, но в более широком, чем у философов, смысле.

Гипотеза Бёрча и Швиннертона-Дайера

Математики были всегда очарованы проблемой описания всех решений целых чисел х, у, z и алгебраическими уравнениями типа

х2 + у2 = z2.

Евклид дал полное решение данного уравнения, но для более сложных уравнений решение становится крайне трудным. Действительно, в 1970 году Ю. В. Матусевич показал, что десять проблем Гилберта являются нерешаемыми, так как нет общего метода определения того, когда такие уравнения имеют решения в целых числах. Но в некоторых случаях можно на что-то надеяться. Когда решения являются точками абелианского множества, гипотеза Бёрча и Швин-нертона-Дайера утверждает, что часть группы рациональных точек описывает поведение соединенной «зета» функции z (s) около точки s = 1. В частности, эта удивительная гипотеза утверждает, что если z(1) равно или приближается к нулю, то там есть бесконечное число рациональных решений, и, соответственно, если z (1) не равно нулю, то там есть только конечное число таких решений.

Проблемы описания действий над целочисленными множествами с помощью алгебраических уравнений типа

х2 + у2 = z2

на современном этапе решаются с привлечением ЭВМ и на основе использования достаточно простых алгоритмов, огромного объема вычислений и на последнем этапе — отбора полученных решений по определенным критериям.

Хотелось бы подчеркнуть, что в описанной задаче неявно просматривается идея Каббалы — самозначимость множества цифр, которым придается сакральное значение. Ведь что такое “единица»? Это ступенька перехода количества в качество, когда набор каких-либо элементов (однородных или неоднородных) образует объем, определяемый и выделяемый из окружающего мира: атом, кирпич, человек, Солнечная система и пр. Придавать единице особое, мистическое, значение вред ли целесообразно.

Однако у многих математиков всегда присутствует желание свести все к единым, по возможности целочисленным решениям и, соответственно, к единой формуле. Конечно, идеальное представление позволяет более или менее адекватно представить окружающую нас Вселенную, но не всегда и не везде действуют законы простых чисел. В частности, в особых точках (нуле или разрыве функции) решения всегда значительно усложняются. Математически это ведет к неоднозначности результатов и по формальным признакам дает возможность спекулятивных (как толковали «многозначность» в средневековье) решений. Но при математических преобразованиях теряется смысл этих решений. Нуль и единица, относящиеся к любому конкретному объекту, обозначают всего лишь его отсутствие или этап для дальнейшего счета. Поэтому разговор о стремящемся к нулю или равном нулю объекте физической Вселенной представляется уходом в ту область, откуда (при определенных граничных условиях) может появиться либо этот предполагаемый объект, либо нечто иное, либо вообще ничего.

В области вблизи единицы тоже не для всех объектов ясно, что надо прибавить или убавить для того, чтобы исследуемый объект оставался именно тем, чем мы его считаем.

В гипотезе, естественно, есть определенный практический смысл, но возникает вопрос о полноте отображения граничных условий при исчезающе малых их значениях или вообще при их отсутствии, а это уже — типичный случай выбора стратегии аналогово-цифрового аппарата.

Гипотеза Пуанкаре

Если мы натянем резиновую ленту вокруг поверхности яблока, то затем мы можем медленно стянуть ее вниз, в точку без разрыва, и не допуская соскальзывания с поверхности. Если же мы представим себе, что в другой руке такая же лента натянута вокруг бублика, то понятно, что невозможно стянуть резиновую ленту к такой же точке без разрыва ленты или разрушения бублика. Мы говорим, что поверхность яблока «просто соединена» (непрерывна), а поверхность бублика — нет. Пуанкаре больше ста лет назад понял, что двухмерная сфера существенно характеризуется этим свойством «простого соединения», и поставил вопрос о трехмерной сфере (набор точек в четырехмерном пространстве на одинаковом расстоянии от рассматриваемой фигуры-оригинала). Этот вопрос очень труден, и математики бьются над его решением до сих пор.

Предположение Ходжи

В XX веке математики открыли эффективные пути исследования форм сложных объектов. Основным является вопрос о том, до какой степени сложности мы можем приближать предлагаемые объекты, соединяя их вместе из простых геометрических блоков увеличивающихся размеров. Эта технология обещает быть очень сильной и должна привести к образованию мощных инструментов, которые позволят математикам достичь большого прогресса в каталогизации всего многообразия объектов исследования. К сожалению, геометрические начала этого процесса я рамках данного представления остаются неясными. В некоторых случаях приходится подставлять куски, не имеющие никакой геометрической интерпретации. В предположении Ходжи утверждается, что для каждого вида пространства, определяемого алгебраическим многообразием, фигуры, называемые кругами Ходжи, рационально-линейно формируются из геометрических фигур, называемых алгебраическими кругами.

В обеих задачах ставится очень важный практический вопрос о возможности описаний и вычисления многомерной поверхности, что необходимо для расчетов пространственных взаимодействий, например, химических реакций, тепло- и массопереноса и т. д. Здесь ответ на вопрос определяется рациональным выбором системы координат. Обычно используются прямоугольные системы, а полярные существенно упрощаются, что делает неизбежными ошибки даже при наиболее простых работах на поверхности геоида (Земли). Применение же более сложных систем неевклидовой геометрии, четырехмерных и более пространств либо сопровождается значительным увеличением объемов расчетов, либо ведет к многозначности ответа, либо происходит и то и другое вместе.

Предложения о сведении любой структуры к набору достаточно простых (в смысле математического описания) геометрических фигур являются перспективными. Но! По формальным признакам, что осложняет перенос решений в ЭВМ, возникают особые точки; где решения неоднозначны.

Предложенная задача Ходжи и является одной из попыток как-то скорректировать неоднозначность решения. При ее решении представляется наиболее разумным применить аналого-цифровой подход.

Известная нам Вселенная в своей основе состоит из полевых структур, в частности атомных и субатомных, образующих и так называемую материю-субстрат с более или менее определенными границами. Каждая частица имеет границу объема, далее которой она перестает быть сама собой. Определение этой границы является аналоговой операцией, констатирующей, где происходит переход количества в качество. Далее происходит просто цифровой счет. Это и есть наиболее общее решение задачи. Автор считает, что, скоординировав работу известных ему специалистов и финансируя эту работу так, как она того заслуживает, и посвятив ей лет 5–6, он мог бы получить как одно из решений этой задачи, так и несколько сопутствующих решений задач, здесь не приведенных по определению эталонных значений и систем координат, но предпочитает оставить эту рутинную (в хорошем смысле слова) работу коллективам математиков и физиков. К тому же примерная стоимость экспериментов и расчетов на 2 порядка превысит размер объявленной премии.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Строение и законы Вселенной"

Книги похожие на "Строение и законы Вселенной" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Дмитрий Черкасов

Дмитрий Черкасов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Дмитрий Черкасов - Строение и законы Вселенной"

Отзывы читателей о книге "Строение и законы Вселенной", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.