Алексей Лосев - Хаос и структура

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Хаос и структура"
Описание и краткое содержание "Хаос и структура" читать бесплатно онлайн.
"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число.
"Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."
Вот эта идея и является здесь решающей. Подобно тому, как малейший сдвиг точки со своего места уже порождает отрезок, на котором мощность всех действительных чисел равна континууму (одномерному), так малейший сдвиг самого отрезка уже порождает некоторую плоскость, на которой мощность всех действительных точек равна тоже континууму, но—двухмерному. Тут же мы проделываем все те операции, что и для перехода от ω к Ω, и получаем Ωχ. От Ωχ мы таким же путем доходим до Ω2, от Ω2 до Ω3 и т. д. и т. д., получая континуумы все большего и большего числа измерений. Наконец, мы получаем и бесконечно–мерный континуум Ω^, а дальше затем и такой континуум, у которого множество измерений само имеет мощность континуума, или континуально–мерный континуум <Ωω>.
Отсюда выясняется вся принципиальная важность трансфинитных чисел классов, начиная с третьего. Уже Ω есть переход от одномерного континуума к двухмерному, следовательно, третий с Ω класс чисел дает двухмерный континуум, четвертый (начиная с Ω3) дает трехмерный континуум и т. д. С момента Ωω начинается континуальная сплошность бесконечного числа измерений континуума. И, соответственно, ΩΩι, ΩΩζ, ΩΩι и т. д.
Мы, однако, не станем анализировать все эти числовые бездны, чтобы не впасть в потенциальную бесконечность и тем самым не нарушить принципа транс–финитности. Для нас достаточно выставить просто множество всех чисел, куда войдут и все континуальные, как и неконтинуальные порядки; множество всех чисел есть вполне упорядоченное множество, обладающее целым рядом совершенно определенных свойств. Но мы [не] станем здесь строить теорию этого замечательного множества, а только закрепим его терминологически как тотальность, понимая под этим все, что вообще больше континуума, — по преимуществу же счетно–мер–пый континуум.
Если уже просто континуум, как указано выше, есть вне–числовая выразительная форма числа, то сфера тотальности, которая есть раскрытие общеконтинуального принципа, оказывается наивысшей развитой выразительной формой вне–числового осмысления числа вообще. Этим, надо думать, исчерпывается вся сфера чисел вообще.
11. а) Остается еще одна область вопросов, которую нам необходимо выставить тоже на первый план, оставаясь, конечно, на позиции чисто принципиального исследования. Это, вообще говоря, вопрос о взаимопред–полагаемости и в то же время взаимонесводимости всех рассмотренных выше диалектических ступеней вне–числового осмысления. Математики здесь блещут точностью и общеобязательностью своих заключений. Для характеристики этого разброда Η. Н. Лузин[95] воспользовался «демоном» Максвелла, который владеет каждым математиком и внушает ему одни вкусы, исключая другие.
«1. «Демон» Брауэра. Его область есть область целого конечного, и притом ограниченного путем указания верхнего конечного предела. За этой областью все лежит «вне математики».
2. «Демон» Бэра. Его область есть просто область целого конечного без указания верхней конечной границы. Бесконечное — это лишь fagon de parler[96] и находится «вне математики».
3. «Демон» Бореля. Его область есть область счетной бесконечности. Всякое несчетное множество — «вне математики».
4. «Демон» Лебега. Его область есть область мощности континуума. Всякая операция, требующая континуум простых шагов, доступна этому «демону»; поэтому определение верхней меры еще лежит в области математики. Но мощность 2е, мощность совокупности всех функций, уже отрицается Лебегом и не по силам его «демону».
5. «Демон» Цермело. Его поле операций — всякие мощности, в частности, всякое множество «демон» Цермело может «сделать» вполне упорядоченным».
Что может сказать философ по этому поводу? Можно только улыбнуться наивности этих философских рассуждений и похвалить за откровенное признание математиками субъективизма своей философии. Сказать, что существует только конечное и нет ничего бесконечного, или сказать, что существует только бесконечное и нет никаких подразделений в сфере бесконечного, — это значит слишком откровенно раскрывать свои ни на чем не основанные, но весьма интимные потребности и симпатии.
Приходится и здесь покинуть эту зыбкую и наивную почву кустарных домыслов и обратиться к беспристрастному и ко всему одинаково равнодушному суду диалектики. Но суд диалектики беспощаден.
b) Для диалектики совершенно нет никаких оснований предпочитать одну категорию другой. Если га или иная категория как–нибудь образовалась, т.е. имеет тот или иной смысл, то этого уже достаточно для того, чтобы ее нельзя было уничтожить никакими силами. Если конечное, бесконечное и разные виды бесконечного являются хоть какими–нибудь логическими категориями (пусть не столь богатыми, как можно было бы предполагать), то этим уже все решено: никакую категорию нельзя просто уничтожить, ее можно только подчинить другой или, наоборот, другую категорию подчинить ей, можно, наконец, при желании, и совсем о ней не размышлять, но если она хоть что–нибудь значит, то мыслить ее можно только как необходимую. Следовательно, поскольку в предыдущем мы именно установили смысл выразительно–числовых категорий, постольку все они для пас обязательны, и мы не можем пожертвовать ни бесконечным в пользу конечного, ни конечным в пользу бесконечного. Речь может идти только о диалектической системе этих категорий, т.е. о том, в каком смысле одна из них предполагает другую и как они объединяются в одно целое.
c) Чтобы укрепиться в той позиции, что рассмотренные нами выразительные формы есть именно категории, обратим внимание на то, что им вовсе не свойственны чисто количественные различия. Профан обычно думает, что конечное — это что–то обязательно очень маленькое, а вот бесконечное — это что–то ужасно огромное, что получается в результате постепенного увеличения малых размеров конечной величины. Эта точка зрения должна быть уничтожена до последнего основания. Никаким увеличением нельзя конечное превратить в бесконечное и бесконечное в континуум. Тут разница не по количеству, а по качеству или, точнее говоря, по категории. Никогда одна категория не расплывается и не воссоединяется так, чтобы из этого получилась другая категория. Эту другую категорию никаким способом нельзя получить откуда–нибудь, если она еще не существует сама по себе. Всякое получение одной категории из другой в диалектике вполне равносильно и их полной взаимной независимости и самостоятельности.
В частности, нужно сказать, что данный отрезок прямой вовсе не должен быть увеличиваем до бесконечности, чтобы мы имели эту бесконечность реально. Каждый конечный отрезок, как бы мал он ни был, уже есть бесконечность точек и интервалов и даже континуум, и даже в известном смысле тотальность. Бесконечность отличается от конечного вовсе не тем, что она больше его. Один и тот же отрезок, например — в один сантиметр, может считаться и конечным, и бесконечным, и континуальным, и тотальным, смотря по точке зрения, т. е. смотря по той категории, которую мы употребим для оценки данного отрезка.
Вот почему нелепы рассуждения тех математиков, которые допускают в своей науке только конечные величины, но пугаются счетных множеств или допускают счетные множества, но пугаются еще высших мощностей. Уже допустивши отрезок [0; 1 ], математик допустил решительно все — и конечную, и счетную, и континуальную, и тотальную мощность. И даже если бы он допустил отрезок, в любое количество раз меньший, чем [0; 1 ], он все равно уже фактически, но скрыто для себя, допустил все указанные основные выразительные формы числа.
Итак, в отношении выразительно–числовых форм мы должны выставить следующие положения.
1. Существует четыре основных выразительно–числовых формы: а) конечная, b) инфинитезимальная, с) трансфинитная и d) континуально–тотальная.
2. Если число дано на стадии выразительной формы, то оно сразу содержит в себе все эти четыре формы. Если оно характеризуется хотя бы одной из этих форм, то остальные также присутствуют тут целиком.
3. Это, однако, не значит, что всеми ими нужно пользоваться сразу. Обычно выбирается и фиксируется какая–нибудь одна из них, смотря по той категории, которую желательно иметь в виду. Конечная выразительная форма основана на категории едино–раздельности (или бытия определенного), инфинитезимальная — на категории становления, трансфинитная — на категории ставшего и континуально–тотальная — на категории энергийно–эманативного бытия.
4. Никакая из этих категорий не сводима одна на другую, но никакая зато и не может существовать без других. Все они — нечто, и все они — разное.
d) Такая установка поможет нам и при детальном рассмотрении указанных форм, которого, впрочем, мы делать не будем, но которому зададим только определенное направление.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Хаос и структура"
Книги похожие на "Хаос и структура" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Алексей Лосев - Хаос и структура"
Отзывы читателей о книге "Хаос и структура", комментарии и мнения людей о произведении.