Алексей Лосев - Хаос и структура

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Хаос и структура"
Описание и краткое содержание "Хаос и структура" читать бесплатно онлайн.
"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число.
"Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."
е) Таким образом, математическая мысль, установившая в этом виде самую идею порядка (или упорядоченного множества), действовала здесь хотя философски и слепо, но на ощупь шла правильно. Наша задача — внести в эту математическую мысль философско–логичес–кую ясность, которая и будет достигнута, как это ясно из предыдущего, следующим образом.
1) Идея порядка как таковая не может быть «определена», поскольку она является исходной; и мы видели, что Френкель ее вовсе даже не определяет, а предполагает готовой и только рассуждает о сфере ее применения. Но можно часто увидеть в ней то последнее зерно, которое остается неизменным при всех возможных ее функционированиях. 2) Это зерно заключается (и это особенно видно на втором свойстве множества R) не в чем ином, как в категории подвижного покоя. Второе свойство только ведь о том и говорит, что от одного момента можно перейти к другому. 3) Эта категория подвижного покоя может, однако, по–разному применяться в зависимости от сферы своего функционирования. Мы можем ее понимать а) отвлеченно–арифметически. По–видимому, это именно понимание Френкель имеет в виду, когда он говорит о том, что тх раньше т2 (или наоборот). В таком виде идея порядка в собственном смысле еще не нарушается. Это скорее принцип порядка, чем самый порядок («инобытийно–нулевая упорядоченность»). Совсем другое получится, если категория подвижного покоя b) перейдет в свое инобытие и начнет в нем воплощаться. Это создаст тот материал, без которого не может быть и самого порядка (поскольку порядок есть всегда порядок чего–нибудь). Однако в чисто инобытийном смысле категория подвижного покоя дала бы геометрическую, а не теоретико–множественную упорядоченность. Необходимо ей из инобытия вернуться к себе, т. е. все эти инобытийные, геометрические «части» положить в себе, в сфере чисто числовой, отождествить с чистым смыслом, поднять в свою сферу. Тогда эти «части» получают опять чисто числовой характер, но уже с той идеей расставленности и распределенности, которая была характерна для чистого инобытия. Это и есть теоретико–множественная упорядоченность. 4) Следовательно, в упомянутом математическом определении упорядочивающего множества мы имеем не определение порядка, но — на основе уже имеющейся определенной идеи порядка — конструирование именно теоретико–множественной упорядоченности, возникающей в отличие от абстрактной идеи порядка на основе инобытийно–алогических модификаций. Все это, с одной стороны, подтверждает правильность защищаемого в нашем исследовании места как самой идеи порядка, так и всей теории множеств, с другой же — показывает слепую и бессознательную целесообразность математической мысли, идущей своими путями без философских методов и логической выучки.
О Существует еще иное определение порядка — при помощи понятия упорядоченной пары и однозначной функции[32]. Но чтобы не затягивать изложения, мы не станем его анализировать.
§ 53. Аксиома подвижного покоя в теории вероятностей.1. Согласно аксиоме подвижного покоя, математическая вероятность должна быть такова, чтобы было видно, как она переходит в другую вероятность и как ее движение на этом останавливается. Чтобы выявить свое движение, вероятность, очевидно, должна в самой себе таить свое изменение. Как это возможно? Пусть мы имеем некое событие А, и пусть его вероятность равняется а. Чтобы вероятность оказалась в движении, надо событию А некоторым образом меняться. Если событие А мыслится некоторым образом в процессе изменения, то и вероятность его а, очевидно, тоже окажется изменяющейся. Но поскольку никаких иных причин и событий, кроме А, мы не знаем, остается, чтобы самое осуществление этого А повлекло за собою появление новых факторов и новых событий, способных изменить содержание нашего А. Другими словами, если вероятность приходит в движение, то это значит, что она относится к событиям взаимно зависимым, т. е. к совмещению событий. Действительно, та вероятность, с которой мы имели дело при изучении аксиомы самотождественного различия (§ 49.8), касалась событий, независимых одно от другого, и это мы там подчеркивали. Поэтому одна вероятность там только отличалась от другой и отождествлялась с ней, но не было видно, как она переходит в другую. Теперь же по факту самой вероятности, по ее осуществлению мы начинаем видеть, как она становится другой вероятностью, подобно тому как в арифметике за а следует b, и если уже за а следует 6, то необходимо сказать, что Ъ возникает после а, что, следовательно, между этими двумя числами существует строго определенный порядок. Но в теории вероятностей мы оперируем не просто с числами, а с числами в зависимости от случайных фактов, с числами как структурами бытия случайного.
Поэтому тут мало будет выставить утверждение, что если а >6, то b<а. Это утверждение было бы арифметическим, а не теоретико–вероятностным. Значит, необходимо ввести идею порядка в зависимости от случайного бытия, т. е. в зависимости от самого события, от голого алогического факта, от осуществления факта. Само это осуществление вероятности должно повлечь за собою ее движение, ее определенную изменяемость. Это, однако, есть учение о вероятности не просто событий, но совмещения событий.
2. У С. Н. Бернштейна[33] имеется тезис, который у него назван аксиомой совмещения событий. Удивительным образом это и есть то, что мы называем аксиомой подвижного покоя в теории вероятностей. Тут приходится еще и еще раз удивляться, как математическая мысль, если она правильная, бессознательно формулирует как раз те самые тезисы, которые философ дедуцирует из общих диалектических оснований разума. Тут редкий случай, когда я могу переписать математическую аксиому к себе, в свое философское исследование, не внося в нее решительно никаких поправок.
Аксиома подвижного покоя в теории вероятностей: если а есть частный случай факта А, то вероятность а при данных условиях зависит только от вероятности факта А при тех же условиях и от вероятности, которую приобретает а в случае осуществления факта А.
Примером независимых фактов может служить одновременное кидание игральной кости, все шесть граней которой равновероятны, и вынимание шара из урны, в которой находится одинаковое количество белых и черных шаров. Так как эти события независимы, то вероятность каждого из 12 возможных их совмещений всегда будет одна и та же, а именно равна 1/12. Другое дело, когда имеется в виду опыт с зависимыми событиями. Если Иван покупает по одному билету в двух лотереях, а Петр покупает билет только в первой лотерее с тем, чтобы купить билет во второй лотерее только в случае выигрыша в первой, то, хотя вероятность выигрыша в первой лотерее у обоих одинакова, а во второй — у Ивана больше, чем у Петра (поскольку Петр во второй участвует необязательно), все же в результате вероятность выигрыша в обеих лотереях у Ивана и Петра одна и та же, потому что вероятность выигрыша для Петра во второй лотерее будет одинаковой с вероятностью этого выигрыша для Ивана. Здесь вероятность выигрыша в обеих лотереях для обоих одна и та же, поскольку она зависит от вероятности первого выигрыша (одинаковой для обоих) и вероятности второго после осуществления первого (тоже у обоих одинаковой).
Более просто «аксиома совмещения» демонстрируется на таком примере. Существуют такие вероятности: 1) умереть для здорового 10–летнего ребенка в течение года вообще; 2) заболеть ему же скарлатиной вообще; 3) ему же умереть в течение того же срока от скарлатины. Наперед должно быть ясно, что, поскольку в третьей вероятности смерть рассматривается в зависимости от скарлатины, эта вероятность будет зависеть как от вероятности скарлатины вообще, так и от вероятности смерти для заболевшего скарлатиной, причем она не зависит от вероятности смерти вообще для 10–летнего. Как, однако, вычислить эту вероятность совмещения, будет рассматриваться в своем месте (§ ).
III. ОПРЕДЕЛЕННОЕ БЫТИЕ § 54. Аксиома определенности (закона) бытия в арифметике.1. В § 26, 27 и 46.1 мы видели, что число как идеальная структура (в отличие от реального становления) характеризуется пятью категориями: бытие, различие, тождество, движение и покой. Вся эта область представляет собою бытие в широком смысле слова, т. е. бытие, включая и всю его внутреннюю структуру. Оно диалектически противостоит инобытию, или небытию, объединяясь с которым превращается уже в бытие, для которого положена также и внешняя граница, т. е. в ограниченное, в определенное бытие, дальнейшая эволюция которого приходит уже к становлению. В этом смысле инобытие может быть объединено с бытием так же тесно, как мы объединяли тождество и различие и как объединяли покой и движение. Если мы рассмотрим теперь значение этой составной категории определенности бытия, или закона построения бытия, то вместе с самотождественным различием и подвижным покоем это составит достаточно полное η систематическое рассмотрение всей чисто бытийной (онтической) и смысловой стороны числа, и мы сможем тогда перейти и к категориям, связанным с алогическим становлением.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Хаос и структура"
Книги похожие на "Хаос и структура" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Алексей Лосев - Хаос и структура"
Отзывы читателей о книге "Хаос и структура", комментарии и мнения людей о произведении.