Алексей Лосев - Хаос и структура

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Хаос и структура"
Описание и краткое содержание "Хаос и структура" читать бесплатно онлайн.
"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число.
"Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."
b) Итак, теоретики множества ошибаются, когда думают, что множество можно определить вне категории инобытийно–числового гипостазирования. Они ошибаются тут точно так же, как и тогда, когда думают, что возможно какое–то множество вообще и что не всякое множество может быть мыслимо вполне упорядоченно. С точки зрения беспристрастной логики, т. е. для чистой мысли, только и может существовать вполне упорядоченное множество, и никакое другое. Все прочее есть только абстрактные моменты, которые, конечно, необходимо изучать каждый в отдельности, памятуя, однако, что всякий абсолютный отрыв этих моментов от цельного понятия множества грозит провалом самого предмета, что и происходит, когда, отрывая множество от идеи порядка, просто покидают сферу теории множеств и переходят в обычную, я бы сказал, пошлую арифметику.
c) С другой стороны, мы тут же должны отметить, что, несомненно, есть полный смысл в том, чтобы вводить в теорию множеств понятие мощности и эквивалентности, отличая их как от чисто арифметических конструкций количества и равенства, так и от дальнейших построений в теории множеств относительно типов и подобия. Только вводить их надо не так, как это делается обычно. Систематическое изложение всех этих вопросов мы проводим в соответствующем отделе нашего исследования; здесь же скажем только несколько слов—для того чтобы оправдать понимание всякого множества как потенциально упорядоченного множества, да и то сделать это целесообразно только при разъяснении аксиомы подвижного покоя (§ 52).
Вопрос сводится, к разным диалектическим ступеням упорядочивания. Математики думают, что упорядочивание может быть разным только в смысле различия частей множеств, с каковой точки зрения «вполне упорядоченным» множеством называется такое, каждая часть которого имеет «первый элемент». Но понимать так упорядочивание— это значит то же самое, как если в геометрии вместо различия вида кривых проводили бы только различие в их длинах. С диалектической точки зрения существует несколько форм более глубокого упорядочивания, являющихся формами не самих упорядоченных множеств, но формами самой категории их упорядочивания (§ 52. 4). К числу этих форм принадлежит и то упорядочивание, которое при взаимном сравнении множеств порождает из себя картину эквивалентности и категорию мощности. В данном месте мы только запомним, что всякое множество так или иначе связано [с ] инобытийно–числовым гипостазированием, т. е. потенциально с идеей порядка. Интересует же нас здесь совсем не самое упорядочивание (это всецело относится к области проявления категории подвижного покоя), но, высказывая что бы то ни было о множестве, нужно помнить, что множество (в особенности конечное) только и отличается от обыкновенного арифметического числа идеей инобытийно числового полагания.
3. Имея все это в виду, как ответить на вопрос о проявлении категории самотождественного различия в области множества?
Множество есть число, возвратившееся из инобытия к самому себе. Арифметическое число есть просто число. В нем не положено никакого различия между ним самим как бытием и каким–нибудь инобытием, которое было бы внешним в отношении него. Число по своему смыслу есть вследствие этого то же, что и число по своему бытию, т. е. по актам своего полагания. Сколько раз случился акт полагания, столько единиц мы фиксируем и в числе. Его смысловое, т. е. в данном случае количественное, содержание находится в полном соответствии с его бытийным содержанием; и даже нельзя сказать, что тут происходит «соответствие». Соответствовать одно другому может тогда, когда эти взаимно соответствующие предметы как–то отличны друг от друга. В арифметическом же числе не положено самого различия между его смыслом и его фактом. И это понятно, потому что различие между тем и другим предполагает переход чистого смысла в инобытие. А число арифметическое есть чистый смысл.
Что теперь происходит в экстенсивном числе и в геометрической совокупности? Здесь инобытие чистого числа. Это значит, что и тождество тут инобытийно, равно как и различие инобытийно. Инобытийное различие — это значит различие не чисто смысловых актов, но различие таких актов полагания, которые сами по себе еще ничего не говорят о различиях смысловых, о смысловых полаганиях. В арифметическом числе акт полагания равносилен акту смыслового различия. В геометрической же совокупности акт полагания еще ничего не значит как смысловое полагание. Это и есть признак того, что число перешло в свое инобытие. Оно расползается тут по актам своего полагания, но это совершенно не касается его смысловой разделенности, которая или прямо отсутствует (как в континууме), или обладает актами инобытийной связанности упомянутых актов (как во всякой геометрической фигуре).
Множество совмещает в себе все особенности и интенсивного числа, и экстенсивной фигурности[22]. Множество арифметично, ибо вся его математическая судьба разыгрывается в чисто числовой сфере, и тут нет и помина о каком–нибудь пространстве. С другой стороны, множество есть всегда инобытийное иолагание, откуда образуется и упорядоченность, т. е. некая фигурность, а это уже заставляет вспомнить о геометрии. Откуда получается фигурность в экстенсивном числе? Она получается из того, что акты полагания различным образом расставлены. Но почему они различным образом расставлены? Потому что имеется в виду не просто самый акт полагания (и их количество), но и то поле, на котором совершается полагание, которое, будучи измеренным, и дает различное расстояние и промежутки. Это и значит, что тут существенную роль играет инобытие, ибо «поле», где совершаются акты полагания, в точном диалектическом смысле есть только иное, чем самые акты. Теперь спрашивается: а если будет разная «расставленность» актов в самом числе, то как возможна такая конструкция? Ясно, что чистое экстенсивное бытие будет здесь вобрано в сферу самого числа и произойдет синтез чистого числа и чистой его инобытийности. Когда такой синтез произведен, мы получаем понятие множества. Но тогда числу необходимо вернуться из инобытия к себе самому, пережить отрицание своего отрицания и от этого получить новое утверждение.
В общей диалектике доказывается, что отрицание отрицания никогда не приводит к простому повторению того, что уже было утверждено. В синтезе тезис не просто повторен, но дан в соответственно новом плане; он здесь не только просто он, но еще и свое иное, еще и все инобытие, от которого он, взятый сам по себе, так резко отличался. Во множестве мы имеем как раз прекрасный пример этого диалектического возвращения к самому себе: тут дана и вся числовая природа, и вся инобытийно–геометрическая, но это уже не есть ни арифметическая, ни геометрическая совокупность, а нечто третье, высшее и более общее.
4. В связи с этим аксиома самотождественного различия примет форму, аналогичную с геометрией, но с переходом к чисто числовой интерпретации. В геометрической совокупности даны абсолютно изолированные по акту своего полагания элементы. Но в геометрии они даны сами по себе, без влияния на числовое содержание совокупности. Здесь же смысловое содержание множества будет в точности соответствовать инобытийным актам полагания. Соответственно изменится и формулировка аксиомы.
Аксиома самотождественного различия в теории множеств: множество есть совокупность абсолютно изолированных элементов, возвратившихся из инобытия к самим себе. Или подробнее: множество есть совокупность элементов, абсолютно изолированных по актам своего полагания, но отождествленных или различенных в точном соответствии с этими актами, однако же в их чисто числовом понимании.
5. Эту формулу выражают в теоретико–множественной аксиоматике иначе. Даже, собственно говоря, нельзя и сказать, что иначе. Дело в том, что обычная аксиоматика, с которой приходится встречаться в изложении теории множеств, слишком слепая и связанная; и никогда не знаешь, почему авторы берут эти, а не другие аксиомы и почему дают им то, а не иное выражение. Поэтому можно говорить только о более или менее отдаленном соответствии наивно–эмпирических обобщений конкретной теоретико–множественной аксиоматики с нашими аксиомами, выведенными в строжайшей системе с сознательным применением самого глубокого и точного философского метода—диалектического.
Именно, нашей аксиоме самотождественного различия в теории множеств соответствует, по–видимому, та аксиома Цермело и других, которая известна под названием аксиомы объединения, хотя и т. н. аксиома спаривания, по–видимому, говорит в значительной мере о том же самом. Аксиома объединения (Vereinigung) гласит у Цермело— Френкеля так: «Если т есть множество, содержащее по крайней мере один элемент, то существует объединенное множество, которое содержит в качестве элементов все вместе элементы т и также—только эти». Аксиома спаривания (Paarung) гласит: «Если а и b—два различных множества, то существует множество <д, ft), которое содержит в себе множества а и ft— и только их — и которое может считаться парой а и ft». Взятые сами по себе, эти аксиомы весьма важны, потому что очень важно отметить различие отношения, в которое вступают между собою элементы разных множеств в зависимости от объединения самих множеств. Так, если город состоит из улиц, а улицы — из домов, то дома суть элементы вовсе не города, а только улицы; если дома в каком–то смысле могут считаться элементами города, то это надо фиксировать специально, что, по–видимому, и сделано в «аксиоме объединения». То же соответственно и в «аксиоме спаривания».
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Хаос и структура"
Книги похожие на "Хаос и структура" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Алексей Лосев - Хаос и структура"
Отзывы читателей о книге "Хаос и структура", комментарии и мнения людей о произведении.