» » » » Алексей Лосев - Хаос и структура


Авторские права

Алексей Лосев - Хаос и структура

Здесь можно скачать бесплатно "Алексей Лосев - Хаос и структура" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, год 1993. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Алексей Лосев - Хаос и структура
Рейтинг:
Название:
Хаос и структура
Издательство:
неизвестно
Год:
1993
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Хаос и структура"

Описание и краткое содержание "Хаос и структура" читать бесплатно онлайн.



"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число.

"Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."






Все дело тут в том, что арифметика на первый план выдвигает конечное и раздельно–устойчивое, рассматривая бесконечное и непрерывное только как задний фон, а анализ выдвигает бесконечное и непрерывно–становящееся, рассматривая как задний план именно конечное. То, что именно они полагают, одно и то же. Но то, κάκ именно они полагают, это—разное. Это — изомеры, различие которых— чисто структурное.

Нам кажется, здесь мы имеем замечательный образец проникновения практики в самые недра мышления. Дело обстоит вовсе не так, что мышление существует само по себе, а потом уже оно применяется на практике. Но дело обстоит так, что без практики мышление не может осуществиться и вообще не может даже просто начаться. Вот перед нами т. н. конечное число натурального ряда и бесконечно–малое математического анализа, или попросту прерывность и непрерывность. По существу, по смыслу прерывность и непрерывность есть совершенно одно и то же; складывается то и другое совершенно из тех же самых категорий. Но вот практика повелительно перетасовывает эти категории, дает им разное направление, по–разному их осмысливает. И в результате — из одного и того же «теоретического» построения — получаются две таких колоссальной важности установки, как прерывность и непрерывность.

Так же точно можно было бы отграничить инфинитезимальный тип числа от трансфинитного, который, наоборот, отвергает чистое становление и базируется на таком бесконечном становлении, которое уже остановилось, закончилось, завершилось. И тут точно так же нетрудно установить пункты тождества и пункты различия.

Вывод: инфинитезимальный тип числа, ничем не отличаясь абстрактно–теоретически от числа арифметического и от числа трансфинитного, резко расходится с ними своей собственной смысловой комбинацией, повелительно вызванной к жизни исключительно практическими потребностями мышления. Является ли данное и единственное «множество» конечным или бесконечным, прерывным или непрерывным, становящимся или устойчивым, это вопрос практики. Число «пять» может быть и конечным числом натурального ряда, и дифференциалом, и интегралом, и производной в зависимости от практики мышления. Само по себе «пять» ровно ничего не значит, или, если выражаться точно, оно ровно ничего не значит познавательно для числа. Всякий смысл есть всегда смысл чего–нибудь, что уже не есть просто самый смысл, но дается самостоятельно, практически. Такое же абстрактно–теоретическое «пять» есть только голый смысл, без того, что им осмысливалось бы. А в таком случае оно уже не есть смысл и никакого познавательного значения для числа не имеет (точно так же, как неизвестно, что за химическое соединение Н3С80, если при этом не задана никакая структура).

Идем дальше.

9. Теперь мы отбрасываем в сторону как арифметическое, так и трансфинитное построение числа и сосредоточиваемся исключительно на инфинитезимальном. Что мы тут должны предпринять, чтобы получить конкретные результаты? Конкретность требует ясных разграничений и четких переходов между разграниченными элементами. Число, как первейшее такое разграничение, является, согласно предыдущему, как раз таким переходом от одного к другому. Ясно, что и в инфинитезимальной области первичное различение должно быть именно таково: одно (бытие, «нечто», «это», акт полагания, изолированное и простое утверждение), становление (переход) и ставшее (исчерпавшее себя и первичное одно и потому остановившееся, завершившееся одно). Здесь также только практика может решить, когда и где применить ту или другую категорию и каково различие возникающих здесь инфинитезимальных чисел.

Именно соответственно этим трем категориям мы получаем здесь три основных инфинитезимальных понятия: бесконечно–малое, непрерывность и предел. Тут, разумеется, может идти долгий спор по части терминологии. Однако, по–видимому, не должно вызывать сомнения, что если мы берем становление с точки зрения «бытия», т. е. с точки зрения «нечто», «этого», то тут мы должны получить «становящееся нечто», «становящееся это», некое бытие или что бы то ни было именно в процессе непрерывного становления. Но что же это тогда такое, если не бесконечно–малое, которое как раз и определяется как то, что «может стать» меньше любой заданной величины? Нам кажется, что также ясна и непрерывность, которая есть становление как именно становление, т. е. положенное[214], утвержденное становление, и предел, который определяется именно как то, к чему вечно стремится переменная величина, и в котором стремление, следовательно, взято именно с точки зрения ставшего.

Мы опять–таки настаиваем на том, что теоретически совершенно не существует никакой разницы между бесконечно–малым, непрерывностью и пределом, ибо теоретический и смысловой состав этих категорий совершенно один и тот же. И только практика может решить вопрос, на что тут можно и нужно обратить внимание, какую категорию акцентировать, подчеркивать, класть в основу и какую отодвигать, брать только в виде фона, допускать только как материал для осмысления другими категориями. Словом, эти категории тоже изомерны.

Говорится: бесконечно–малое есть то, что может стать меньше любой заданной величины, или что имеет своим пределом нуль. А что такое предел? Предел для переменной величины есть то, разница между чем и переменной величиной может стать меньше любой величины, или, что то же, стремится к нулю. А что такое непрерывность, напр. непрерывная функция? Функция непрерывна в данной точке тогда, когда бесконечно мало ее приращение в случае бесконечной малости приращения ее аргумента. Вот три определения. По своему категориальному составу это совершенно одно и то же определение: везде тут 1) то, что стремится к пределу, 2) предел, к которому происходит стремление, и 3) самое стремление. В первой категории на первом плане то, что стремится, но тут же указано и на самое стремление, и на предел этого стремления. Во второй категории подчеркнуто то, куда стремление, но тут же сказано и о том, что именно стремится, и о самом стремлении. И наконец, в третьей категории подчеркнуто самое стремление (или, точнее, соотношение двух стремлений, поскольку определялась непрерывная функция), но тут же сказано и о бесконечно–малом, т. е. о нулевом пределе, не говоря уже о том, что стремится тут именно аргумент и функция, т. е. нечто. Следовательно, основное и существенное содержание понятий бесконечно–малого, непрерывности и предела—одно и то же. Не то, что эти понятия только предполагают одно другое, но они просто тождественны по содержанию, и разница тут только в порядке и форме комбинации одних и тех же категорий, т. е. разница тут только, следовательно, структурная. Только практика может решить, где тут бесконечно–малое, где предел и где чистая непрерывность.

10. Только после всех этих разграничений и различений мы можем судить о месте дифференциала, производной и интеграла на фоне общелогической теории числа.

Разумеется, поскольку мы вовсе не задаемся тут целью дать логику математического анализа как системы, а интересуемся только некоторыми его категориями в применении к логике, мы не будем подробно анализировать все эти три, только что полученные нами категории — бесконечно–малого, непрерывности и предела, а сосредоточимся только на последней.

Мы берем инфинитезимальную категорию предела и смотрим на нее теми же самыми расчленяющими глазами, какими смотрели и на число вообще, и на его инфинитезимальный тип. Тут мы тоже расчленим 1) «то, что», 2) «то, как» и 3) «то, куда», т. е. «нечто» (бытие), становление и ставшее.

Будем говорить о пределе (а всякий предел уже есть соединение того, что стремится к пределу, с самим этим стремлением, т. е. синтез конечного и бесконечного) и будем его рассматривать, считать как «то, что стремится к пределу». Как предел, это есть нечто устойчивое и, в частности, конечное. Однако в то же время это не есть конечное в абсолютном смысле, но' то, что само вовлечено в стихию непрерывного и бесконечного становления. Это дифференциал, который как таковой есть переменная величина, но который в основе все же есть синтез конечного и бесконечного, и синтез — типа предела, поскольку в его основе лежит производная (а она всегда есть предел).

Далее, продолжаем говорить о пределе. Но на этот раз пусть наш предел будет не тем, что еще только стремится к своему пределу, но самим этим стремлением, или становлением. Это есть производная, которая есть прежде всего предел; но это не просто предел, предполагающий соответствующее становление, а предел отношения двух становлений, т. е. такой предел, который предполагает рассмотрение одного становления с точки зрения другого становления, т. е. основан на становлении становления, т. е. рассматривает становление именно как становление. Совершенно ясно, что в ряду инфинитезимальных категорий предельность тут дана с сугубым выдвиганием на первый план именно становления. Производная в логическом смысле есть именно метод становления дифференциала некоторым новым пределом, который и есть интеграл.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Хаос и структура"

Книги похожие на "Хаос и структура" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Алексей Лосев

Алексей Лосев - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Алексей Лосев - Хаос и структура"

Отзывы читателей о книге "Хаос и структура", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.