Роджер Пенроуз - Тени разума. В поисках науки о сознании

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Тени разума. В поисках науки о сознании"
Описание и краткое содержание "Тени разума. В поисках науки о сознании" читать бесплатно онлайн.
Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.
Для широкого круга читателей, интересующихся наукой.
Этот момент может оказаться существенным в том, что касается моих собственных выводов из доказательства Гёделя(—Тьюринга), и я, возможно, уделил ему недостаточно много внимания в кратком изложении, представленном в НРК. Как ни странно, но возражение Q11, похоже, никого, кроме меня, не обеспокоило — по крайней мере, никто мне на него не указал! В НРК (с. 417, 418), как и здесь, я сформулировал доказательство Гёделя(—Тьюринга) исходя из того, что посредством разума и понимания способны установить все «математики» или «математическое сообщество». Преимущество подобной формулировки, в отличие от рассмотрения вопроса о способности какого-либо конкретного индивидуума к установлению математических истин посредством своего разума и понимания, заключается в том, что первый способ позволяет избежать некоторых возражений, которые нередко выдвигают в отношении той версии доказательства Гёделя, которую предложил Лукас (1961). Самые разные ученые{31} указывали, к примеру, на то, что «сам Лукас» никак не мог обладать знанием о своем собственном алгоритме. (Некоторые из них говорили то же самое и о варианте доказательства, предложенном мною{32}, не обратив, судя по всему, внимания на тот факт, что моя формулировка вовсе не настолько «личностна».) Именно возможность сослаться на способности к рассуждению и пониманию, присущие всем «математикам» вообще или «математическому сообществу», позволяет нам избежать необходимости считаться с предположением о том, что различные индивидуумы могут воспринимать математическую истину по-разному, каждый в соответствии с личным непознаваемым алгоритмом. Значительно сложнее смириться с тем, что результатом выполнения некоего непостижимого алгоритма может оказаться коллективное понимание математического сообщества в целом, нежели с тем, что этот самый алгоритм обусловливает математическое понимание всего лишь какого-то конкретного индивидуума. Суть возражения Q11 как раз и заключается в том, что упомянутое коллективное понимание может оказаться совсем не таким универсальным и безличным, каким счел его я.
Утверждения, о каких говорится в Q11, действительно, существуют. То есть существуют Π1-высказывания, единственные известные доказательства которых опираются на то или иное применение теории бесконечных множеств. Такое Π1-высказывание может быть результатом арифметического кодирования утверждения типа «аксиомы формальной системы F являются непротиворечивыми», где система F подразумевает манипуляции обширными бесконечными множествами, само существование которых может быть сомнительным. Математик, убежденный в реальном существовании некоторого достаточно обширного неконструктивного множества S, придет к выводу, что система F действительно непротиворечива, тогда как другой математик, который полагает, что множества S не существует, вовсе не обязан считать систему F непротиворечивой. Таким образом, даже ограничив рассмотрение одним вполне определенным вопросом о завершении или незавершении работы машины Тьюринга (т.е. ложности или истинности Π1-высказываний), мы не можем себе позволить не учитывать субъективности убеждений в отношении, скажем, существования некоторого обширного неконструктивно-бесконечного множества S. Если различные математики используют для установления истинности определенных Π1-высказываний неэквивалентные «персональные алгоритмы», то, по-видимому, с моей стороны несправедливо говорить о просто «математиках» или «математическом сообществе».
Полагаю, что в строгом смысле это действительно может быть несколько несправедливо; и читатель может при желании перефразировать вывод G следующим образом:
G* Для установления математической истины ни один отдельно взятый математик не применяет только те алгоритмы, какие он (или она) полагает обоснованными.
Представленные мною доводы по-прежнему остаются в силе, однако, мне кажется, некоторые из более поздних утратят значительную часть своей силы, если представить ситуацию в таком виде. Более того, в случае формулировки G* все доказательство уходит в направлении, на мой взгляд, бесперспективном, сосредоточенном, в большей степени, на конкретных механизмах, управляющих действиями конкретных индивидуумов, нежели на принципах, лежащих в основе действий любого из нас. Меня же на данном этапе интересует не столько различия подходов отдельных математиков к той или иной математической проблеме, сколько то общее, что есть между нашим пониманием и нашим математическим восприятием.
Попытаемся разобраться, действительно ли мы вынуждены принять формулировку G*. В самом ли деле суждения математиков настолько субъективны, что они могут принципиально расходиться при установлении истинности какого-то конкретного Π1-высказывания? (Разумеется, доказательство, устанавливающее истинность Π1-высказывания, может быть просто-напросто быть слишком громоздким или слишком сложным, чтобы его мог воспроизвести тот или иной математик (см. ниже по тексту возражение Q12), т.е. на практике математики вполне могут разойтись во мнениях. Однако в данном случае нас интересует вовсе не это. Мы занимаемся исключительно принципиальными вопросами.) Вообще говоря, математическое доказательство есть вещь не настолько субъективная, как может показаться на основании вышесказанного. Математики могут придерживаться самых разных — и, на их взгляд, неопровержимо истинных — точек зрения по тем или иным фундаментальным вопросам и во всеуслышание объявлять об этом, однако едва дело доходит до доказательств или опровержений каких-либо вполне определенных конкретных Π1-высказываний, все разногласия тут же куда-то исчезают. Никто не воспримет всерьез доказательство Π1-высказывания, утверждающего, по сути своей, непротиворечивость некоторой формальной системы F, если математик будет основывать его только лишь на существовании некоего спорного бесконечного множества S. То, что при этом в действительности доказывается, можно сформулировать следующим, куда более приемлемым, образом: «Если множество S существует, то формальная система F является непротиворечивой, и в этом случае данное Π1-высказывание истинно».
Тем не менее, могут быть и исключения: например, один математик полагает, что некоторое неконструктивно-бесконечное множество S «с очевидностью» существует — или, по крайней мере, что допущение о его существовании никоим образом не приводит к противоречию, — другой же математик никакой очевидности здесь не усматривает. Дискуссии математиков по таким фундаментальным вопросам могут порой принимать поистине неразрешимый характер. При этом обе стороны могут оказаться, в принципе, неспособны сколько-нибудь убедительно изложить свои доказательства, даже в отношении Π1-высказываний. Возможно, каждому математику и в самом деле присуще некое особое внутреннее восприятие истинности утверждений, связанных с неконструктивно-бесконечными множествами. Конечно же, математики нередко заявляют о том, что их восприятие таких вещей в корне отличается от восприятия коллег. Однако я полагаю, что такие различия, по сути своей, подобны различиям в ожиданиях, которые различные математики могут иметь и в отношении истинности обычных математических высказываний. Эти ожидания суть всего лишь предварительные предположения. До тех пор, пока не представлено убедительного доказательства или опровержения, математики могут спорить друг с другом об ожидаемой или предполагаемой истинности того или иного положения, однако представление такого доказательства одним из математиков убеждает (в принципе) всех. Что до фундаментальных вопросов, то там этих доказательств как раз нет. Возможно, и не будет. Быть может, их нельзя отыскать по той причине, что их просто-напросто нет, а фундаментальные вопросы допускают существование различных, но равно справедливых точек зрения.
Здесь, однако, следует подчеркнуть еще один связанный с Π1-высказываниями момент. Возможность наличия у математика ошибочной точки зрения — т.е. такой точки зрения, которая вынуждает его делать неверные выводы в отношении истинности тех или иных Π1-высказываний, — нас в данный момент не интересует. Нет ничего невероятного в том, что математики порой опираются на неверное в фактическом отношении «понимание» — а то и на необоснованные алгоритмы, — только к настоящему обсуждению это никакого отношения не имеет, поскольку согласуется с выводом G. Впрочем, эту ситуацию мы подробно рассмотрим ниже, в §3.4. Следовательно, дело в данном случае заключается не в том, могут ли разные математики придерживаться противоречащих одна другой точек зрения, а скорее в том, может ли одна точка зрения оказаться, в принципе, мощнее другой. Каждая такая точка зрения будет совершенно справедлива в том, что касается установления истинности Π1-высказываний, однако какая-то из них сможет, в принципе, дать своим последователям возможность установить, что те или иные вычисления не завершаются, тогда как другие, более слабые, точки зрения на это неспособны; то есть одни математики будут обладать существенно большей способностью к пониманию, нежели другие.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Тени разума. В поисках науки о сознании"
Книги похожие на "Тени разума. В поисках науки о сознании" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Роджер Пенроуз - Тени разума. В поисках науки о сознании"
Отзывы читателей о книге "Тени разума. В поисках науки о сознании", комментарии и мнения людей о произведении.