Роджер Пенроуз - Тени разума. В поисках науки о сознании

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Тени разума. В поисках науки о сознании"
Описание и краткое содержание "Тени разума. В поисках науки о сознании" читать бесплатно онлайн.
Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.
Для широкого круга читателей, интересующихся наукой.
Упомянем еще об одном любопытном факте. В пресинаптических окончаниях аксонов содержатся некие ассоциированные с миктротрубочками вещества, «работа» которых связана с высвобождением нейромедиаторов, а молекулы весьма примечательны с геометрической точки зрения. Эти вещества — клатрины — строятся из белковых тримеров (так называемых клатриновых трискелионов), этаких полипептидных трехлучевых звезд. Объединяясь в молекулу клатрина, трискелионы образуют геометрически правильные структуры, идентичные по общему строению многоатомным молекулам углерода, называемым «фуллеренами» (а также «бакиболами», или «мячами Баки»[54]) из-за их внешнего сходства со знаменитыми геодезическими куполами, которые проектировал и возводил американский архитектор Бакминстер Фуллер{91}. Клатрины, впрочем, гораздо больше фуллереновых молекул, поскольку одному атому углерода в фуллерене соответствует в клатрине целый трискелион, состоящий из нескольких аминокислот. Те клатрины, что заняты в высвобождении нейромедиаторов в синапсах, имеют форму усеченного икосаэдра — всем нам знакомого многогранника, по образу и подобию которого делают современные футбольные мячи (см. рис. 7.11 и 7.12).
Рис. 7.11. Молекула клатрина (похожая общей структурой на фуллерен, но составленная не из атомов углерода, а из более сложных субструктур — белковых тримеров, называемых трискелионами). Изображенный на рисунке клатрин напоминает внешне обыкновенный футбольный мяч.
Рис. 7.12. Клатрины, подобные тому, что изображен на рис. 7.11, располагаются (вместе с окончаниями микротрубочек) в пресинаптическом утолщении аксона и, по всей видимости, участвуют в управлении интенсивностью синапса; также на интенсивность синапса влияют сокращающиеся актиновые нити в дендритных шипиках, управляемых микротрубочками.
В одном из предыдущих параграфов был поставлен важный вопрос: что управляет изменением интенсивности синапсов и определяет места размещения функционирующих синаптических связей? Учитывая имеющиеся свидетельства, можно уверенно предположить, что центральную роль в этих процессах играет цитоскелет. Как же это предположение может нам помочь в поиске невычислимой сущности разума? Пока что оно, похоже, говорит нам лишь о том, что потенциальная вычислительная мощность мозга оказывается гораздо большей, чем можно было бы ожидать, используй мозг в качестве простейших вычислительных блоков «цельные» нейроны.
В самом деле, если простейшими вычислительными блоками мы теперь будем считать димеры тубулина, то придется предположить, что потенциальная вычислительная мощность мозга просто неимоверно превосходит все то, что предполагали самые смелые теоретики от ИИ. Основываясь на «цельнонейронной» модели, Ханс Моравек в своей книге «Дети разума» [267] предположил, что человеческий мозг может в принципе достичь производительности порядка 1014 операций в секунду, но не более того; это при том, что в мозге имеется около 1011 функционирующих нейронов, каждый из которых способен посылать примерно по 103 сигналов в секунду (см. §1.2). Если же в качестве элементарного вычислительного блока взять димер тубулина, то следует учесть, что на каждый нейрон приходится около 107 димеров; соответственно, элементарные операции теперь выполняются где-то в 106 раз быстрее, в результате чего получаем 1027 операций в секунду. Возможно, производительность современных компьютеров и вправду уже начинает приближаться к первой цифре, 1014 операций в секунду (как весьма убежденно доказывают Моравек и его единомышленники), однако несмотря на все эти успехи, достичь в обозримом будущем производительности 1027 операций в секунду не представляется возможным.
Разумеется, можно смело утверждать, что мозг работает далеко не со стопроцентной «микротрубочковой» эффективностью, какую приведенные выше цифры предполагают. Тем не менее, ясно, что возможность «микротрубочкового вычисления» (см. [183]) позволяет совсем по-иному взглянуть на некоторые из аргументов в пользу неминуемого наступления эпохи искусственного интеллекта человеческого уровня. Можем ли мы теперь поверить хотя бы в то, что уже сегодня возможно{92} численно воспроизвести умственную деятельность червя нематоды, только потому, что мы вроде бы «закартографировали» и численно смоделировали его нервную систему? Как было отмечено в §1.15, умственные способности обычного муравья намного превосходят все то, что на настоящий момент реализовано посредством стандартных ИИ-процедур. Впору поинтересоваться, сколько же муравей выигрывает в производительности благодаря гигантскому массиву своих «микротрубочковых информационных нанопроцессоров», если сравнивать с тем, чего он смог бы добиться, располагай он лишь «переключателями цельнонейронного типа». Что до парамеции, то тут, как вы понимаете, оснований для предъявления иска нет.
Однако аргументы, представленные в первой части, предполагают гораздо более сильное заявление. Я утверждаю, что способность человека к пониманию выходит за рамки какой угодно вычислительной схемы. Если мозгом человека управляют микротрубочки, то в микротрубочковых процессах должно быть что-то принципиально отличное от простого вычисления. Я утверждал, что такая невычислимая активность должна быть следствием достаточно макроскопической квантовой когерентности, объединенной неким тонким образом с макроскопическим поведением — с тем, чтобы обеспечить возможность протекания в системе тех новых физических процессов, что придут на смену бытующей в современной физике паллиативной R-процедуре. В качестве первого шага мы должны выяснить, какова же подлинная роль квантовой когерентности в цитоскелетной активности.
7.5. Квантовая когерентность внутри микротрубочек
Есть ли у нас основания предполагать, что внутри микротрубочек существует квантовая когерентность? Вернемся ненадолго к обсуждавшимся в §7.1 идеям Фрёлиха [131] о возможности феноменов квантовой когерентности в биологических системах. Он утверждал, что если энергия метаболической активности достаточно велика, а диэлектрические свойства задействованных в процессе материалов достаточно экстремальны, то существует возможность возникновения макроскопической квантовой когерентности, аналогичной той, что возникает в феноменах сверхпроводимости и сверхтекучести — иногда объединяемых общим термином конденсация Бозе—Эйнштейна — даже при относительно высоких температурах, какие, собственно, и характерны для биологических систем. Как выяснилось, не только метаболическая энергия достаточно велика, а диэлектрические свойства просто необыкновенно экстремальны (именно этот полученный в 1930-е годы поразительный экспериментальный результат и навел Фрёлиха на соответствующие размышления), но и имеется с некоторых пор даже прямое подтверждение предсказанных Фрёлихом внутриклеточных колебаний с частотой 1011 Гц [177].
В конденсате Бозе—Эйнштейна (который возникает еще и при работе лазера) большое количество частиц совместно образуют одно квантовое состояние. Это состояние описывается волновой функцией того же вида, что и в случае единичной частицы, — только здесь эта функция относится сразу ко всей совокупности образующих состояние частиц. Вспомним о непостижимой с классической точки зрения природе квантового состояния одной-единственной квантовой частицы (§§5.6, 5.11). В конденсате Бозе—Эйнштейна вся состоящая из множества частиц система ведет себя как одно целое, и ее квантовое состояние ничем не отличается от квантового состояния единичной частицы, меняется только масштаб. В этом увеличенном масштабе и возникает когерентность, при которой многие удивительные свойств квантовых волновых функций проявляются на макроскопическом уровне.
Первоначально Фрёлих полагал, что такие макроскопические квантовые состояния должны, скорее всего, возникать в клеточных мембранах[55], однако теперь перед нами открывается другая (и, судя по всему, более правдоподобная) возможность: микротрубочки. Причем эта возможность, похоже, подтверждается экспериментально{93}. Еще в 1974 году Хамерофф предположил [182], что микротрубочки могут действовать как «диэлектрические волноводы». Хочется верить, что Природа снабдила цитоскелетные структуры пустыми трубками отнюдь не просто так. Возможно, сами трубки обеспечивают эффективную изоляцию, позволяющую квантовому состоянию внутри трубки избегать сцепления с окружением в течение достаточно продолжительного времени. В этой связи интересно отметить, что Эмилио дель Джудиче и его коллеги из Миланского университета утверждали [79], что в результате квантового эффекта самофокусировки электромагнитных волн в цитоплазме клетки сигналы сосредотачиваются внутри области, диаметр которой не превышает внутреннего диаметра микротрубочки. Это может послужить еще одним подтверждением волноводной теории, однако возможно также, что этот эффект участвует в собственно образовании микротрубочек.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Тени разума. В поисках науки о сознании"
Книги похожие на "Тени разума. В поисках науки о сознании" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Роджер Пенроуз - Тени разума. В поисках науки о сознании"
Отзывы читателей о книге "Тени разума. В поисках науки о сознании", комментарии и мнения людей о произведении.