Роджер Пенроуз - Тени разума. В поисках науки о сознании

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Тени разума. В поисках науки о сознании"
Описание и краткое содержание "Тени разума. В поисках науки о сознании" читать бесплатно онлайн.
Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.
Для широкого круга читателей, интересующихся наукой.
DE = (a|α〉〈α| + b|β〉〈β|)|ψ〉〈ψ| = a|α〉〈α|ψ〉〈ψ| + b|β〉〈β|ψ〉〈ψ| = (a〈α|ψ〉)|α〉〈ψ| + (b〈β|ψ〉)|β〉〈ψ|.
Члены 〈α|ψ〉 и 〈β|ψ〉 могут «коммутировать» с другими выражениями, так как они представляют собой просто числа, порядок же таких «объектов», как |α〉 и 〈ψ| необходимо тщательно соблюдать. Далее получаем (учитывая, что zz' = |z2|, см. §5.8)
СЛЕД(DE) = (a〈α|ψ〉)〈ψ|α〉 + (b〈β|ψ〉)〈ψ|β〉 = a|〈α|ψ〉|2 + b|〈β|ψ〉|2.
Напомню (см. §5.13), что величины |〈α|ψ〉|2 и |〈β|ψ〉|2 представляют собой квантовые вероятности соответствующих конечных состояний |α〉 и |β〉, тогда как a и b суть классические вклады в полную вероятность. Таким образом, в окончательном выражении квантовые и классические вероятности оказываются смешаны.
В случае более общего измерения типа «да/нет» рассуждение в целом не изменяется, только вместо определенного выше проектора «£» используется проектор более общего вида
E = |ψ〉〈ψ| + |φ〉〈φ| + … + |χ〉〈χ|,
где |ψ〉, |φ〉, …, |χ〉 — взаимно ортогональные нормированные состояния, заполняющие пространство ДА-состояний в гильбертовом пространстве. Как мы видим, проекторы обладают общим свойством
E2 = E.
Вероятность получения ответа ДА при измерении, определяемом проектором E, системы с матрицей плотности D равна следу (DE) — в точности, как и в предыдущем примере.
Отметим важный факт: искомую вероятность можно вычислить, если нам всего-навсего известны матрица плотности и проектор, описывающий измерение. Нам не нужно знать, каким именно образом из индивидуальных состояний была составлена матрица плотности. Полная вероятность получается сама собой в виде соответствующей комбинации классических и квантовых вероятностей, а нам не приходится беспокоиться, какая ее часть откуда взялась.
Рассмотрим повнимательнее это любопытное переплетение классических и квантовых вероятностей в матрице плотности. Допустим, например, что у нас имеется частица со спином 1/2, и мы абсолютно не уверены, в каком спиновом состоянии (нормированном) она в данный момент пребывает — |↑〉 или |↓〉. Предположив, что соответствующие вероятности этих состояний равны 1/2 и 1/2, построим матрицу плотности
D = 1/2 |↑〉〈↑| + 1/2 |↓〉〈↓|.
Простое вычисление показывает, что в точности такая же матрица плотности D получается в случае комбинации равных вероятностей (1/2 и 1/2) любых других ортогональных возможностей — скажем, состояний (нормированных) |→〉 и |←〉, где |→〉 = (|↑〉 + |↓〉)/√2 = (|↑〉 - |↓〉)/√2:
D = 1/2 |→〉〈→| + 1/2 |←〉〈←|.
Допустим, мы решили измерять спин частицы в направлении «вверх», т.е. соответствующий проектор имеет вид
E = |↑〉〈↓|.
Тогда для вероятности получения ответа ДА, согласно первому описанию, находим
СЛЕД(DE) = 1/2 |〈↑|↑〉|2 + 1/2 |〈↓|↑〉|2 = 1/2 × 12 + 1/2 × 02 = 1/2,
где мы полагаем 〈↑|↑〉 = 1 и 〈↓|↑〉 = 0 (поскольку состояния нормированы и ортогональны). Согласно второму описанию, находим
СЛЕД(DE) = 1/2 |〈→|↑〉|2 + 1/2 |〈←|↑〉|2 = 1/2 × (1/√2)2 + 1/2 × (1/√2)2 = 1/4 + 1/4 = 1/2;
правое |→〉 и левое |←〉 состояния здесь не являются ни ортогональными, ни параллельными измеряемому состоянию |↑〉, т.е. на деле |〈→|↑〉| = |〈←|↑〉| = 1/√2.
Хотя полученные вероятности оказываются одинаковыми (как, собственно, и должно быть, поскольку одинаковы матрицы плотности), физические интерпретации этих двух описаний совершенно различны. Мы согласны с тем, что физическая «реальность» любой ситуации описывается некоторым вполне определенным вектором состояния, однако существует классическая неопределенность в отношении того, каким окажется этот вектор в действительности. В первом предложенном описании атом находится либо в состоянии |↑〉, либо в состоянии |↓〉, и мы не знаем, в каком из двух. Во втором описании — либо в состоянии |→〉, либо в состоянии |←〉, и мы снова не знаем, в каком именно. Когда мы в первом случае выполняем измерение с целью выяснить, не находится ли атом в состоянии |↑〉, мы имеем дело с самыми обычными классическими вероятностями: вероятность того, что атом находится в состоянии |↑〉, совершенно очевидно равна 1/2, и больше тут говорить не о чем. Когда мы задаем тот же вопрос во втором случае, измерению подвергается уже комбинация вероятностей состояний |→〉 и |←〉, и каждое из них вносит в полную вероятность свой классический вклад 1/2 помноженный на свои же квантовомеханический вклад 1/2, что дает в итоге 1/4 + 1/4 = 1/2. Как можно видеть, матрица плотности ухитряется сосчитать нам верную вероятность вне зависимости оттого, какие классические и квантовомеханические доли эту вероятность, по нашему предположению, составляют.
Приведенный выше пример является в некотором роде особым, поскольку так называемые «собственные значения» матрицы плотности в этом случае оказываются вырожденными (в силу того, что обе классические вероятности здесь — 1/2 и 1/2 — одинаковы); именно эта «особость» и позволяет нам составить более одного описания в комбинациях вероятностей ортогональных альтернатив. Впрочем, для наших рассуждений это ограничение несущественно. (А упомянул я о нем исключительно для того, чтобы избежать упреков в невежестве со стороны возможно читающих эти строки специалистов.) Всегда можно представить, что комбинация вероятностей охватывает гораздо большее число состояний, нежели просто набор взаимно ортогональных альтернатив. Например, в вышеописанной ситуации мы вполне могли бы составить очень сложные вероятностные комбинации множества возможных различных направлений оси спина. Иначе говоря, существует огромное количество совершенно различных способов представить одну и ту же матрицу плотности в виде комбинации вероятностей альтернативных состояний, и это верно для любых матриц плотности, а не только для тех, собственные значения которых вырожденны.
6.5. Матрицы плотности для ЭПР-пар
Перейдем к ситуациям, описание которых в терминах матриц плотности представляется особенно уместным — и в то же время выявляет один почти парадоксальный аспект интерпретации такой матрицы. Речь идет об ЭПР-эффектах и квантовой сцепленности. Рассмотрим физическую ситуацию, описанную в §5.17: частица со спином 0 (в состоянии |Ω〉) расщепляется на две частицы (каждая со спином 1/2), которые разлетаются вправо и влево, удаляясь на значительное расстояние друг от друга, в результате чего выражение для их совокупного (сцепленного) состояния принимает вид:
|Ω〉 = |L↑〉|R↓〉 - |L↓〉|R↑〉.
Предположим, что некий наблюдатель[45] имеет намерение измерить спин правой частицы с помощью некоего измерительного устройства, левая же частица успела уже удалиться на такое огромное расстояние, что добраться до нее наблюдатель не может. Как наш наблюдатель опишет состояние спина правой частицы?
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Тени разума. В поисках науки о сознании"
Книги похожие на "Тени разума. В поисках науки о сознании" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Роджер Пенроуз - Тени разума. В поисках науки о сознании"
Отзывы читателей о книге "Тени разума. В поисках науки о сознании", комментарии и мнения людей о произведении.