» » » Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi


Авторские права

Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi

Здесь можно скачать бесплатно "Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi" в формате fb2, epub, txt, doc, pdf. Жанр: Программирование, издательство ДиаСофтЮП, год 2003. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi
Рейтинг:
Название:
Фундаментальные алгоритмы и структуры данных в Delphi
Издательство:
ДиаСофтЮП
Год:
2003
ISBN:
ISBN 5-93772-087-3
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Фундаментальные алгоритмы и структуры данных в Delphi"

Описание и краткое содержание "Фундаментальные алгоритмы и структуры данных в Delphi" читать бесплатно онлайн.



Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».

В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.

Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.






Pivot :-aList,List^[R];

{в противном случае в списке всего 2 элемента, выбрать в качестве базового первый элемент}

Pivot := aList.List^[ aFirst ];

{задать начальные значения индексов и приступить к разбиению списка}

L := pred( aFirst);

R := succ(aLast);

while true do

begin

repeat

dec (R);

until (aCompare (aList.List^[R], Pivot) <= 0);

repeat

inc(L);

until (aCompare(aList.List^[L], Pivot) >=0);

if (L >=R) then

Break;

Temp := aList.List^[L];

aList.List^[L] := aList.List^[R];

aList.List^[R] := Teilend;

{выполнить быструю сортировку первого подфайла}

if (aFirst < R) then

QSM(aList, aFirst, R, aCompare);

{выполнить быструю сортировку второго подфайла - устранение рекурсии}

aFirst := succ(R);

end;

end;


procedure TDQuickSortMedian( aList : TList;

aFirst : integer;

aLast : integer;

aCompare : TtdCompareFunc);

begin

TDValidateListRange(aList, aFirst, aLast, 'TDQuickSortMedian');

QSM(aList, aFirst, aLast, aCompare);

end;


В этот раз размер дополнительного блока кода (также специальным образом выделенного) намного больше, чем в предыдущем случае. Большая его часть представляет собой код выбора и сортировки элементов для алгоритма медианы трех. Конечно, новый добавленный код выполняется только тогда, когда в списке имеется не менее трех элементов.

Сортировка трех выбранных элементов выполняется на основе одного малоизвестного и малоиспользуемого метода. Предположим, что выбраны элементы a, b и c. Сравниваем а и b. Если b меньше чем я, поменять их местами. Таким образом, получим a < b. Сравниваем a и c. Если c меньше чем a, поменять их местами. Получим a < c. После выполнения этих сравнений нам будет известно, что элемент a содержит минимальное значение из трех выбранных элементов, поскольку оно меньше или равно значениям элементов b и c. Сравниваем b и с. Если с меньше чем b, поменять их местами. Теперь элементы расположены в порядке a< b<c, т.е. они отсортированы. Если количество элементов в списке не больше двух, в качестве базового элемента выбирается первый.

Это улучшение, несмотря на кажущуюся медлительность, на практике работает быстрее, чем стандартная быстрая сортировка. Надо признать, увеличение скорости незначительно, но, тем не менее, ощутимо.

Теперь оставим в покое алгоритм выбора базового элемента и перейдем к рассмотрению улучшений, касающихся других аспектов быстрой сортировки. Быстрая сортировка - это рекурсивный алгоритм, и уже было показано, каким образом легко избавиться от одного из рекурсивных вызовов. Исключение второго рекурсивного вызова потребует больших усилий, но это может быть оправдано, поскольку позволит устранить некоторые вызовы, установку стека и т.п.

Рассмотрим рекурсивный вызов. Задаются четыре параметра, два из которых постоянны, а два других от вызова к вызову могут изменяться. Постоянные параметры - aList и aCompare, переменные параметры - aFirst и aSecond. Рекурсивный вызов можно устранить за счет использования явного стека, который предназначен для заталкивания и выталкивания переменных параметров. При этом цикл будет выполняться до тех пор, пока стек не будет пустым.

Листинг 5.17. Быстрая сортировка со случайным выбором базового элемента


procedure QSNR(aList : TList;

aFirst : integer;

aLast : integer;

aCompare : TtdCompareFunc);

var

L, R : integer;

Pivot : pointer;

Temp : pointer;

Stack : array [0..63] of integer;

{позволяет разместить до 2 миллиардов элементов}

SP : integer;

begin

{инициализировать стек}

Stack[0] := aFirst;

Stack[1] := aLast;

SP := 2;

while (SP <> 0) do

begin

{вытолкнуть верхний подфайл}

dec(SP, 2);

aFirst := Stack[SP];

aLast := Stack[SP+1];

{пока в списке есть хотя бы два элемента}

while (aFirst < aLast) do

begin

{в качестве базового выбирается средний элемент}

Pivot := aList.List^[ (aFirst+aLast) div 2];

{задать начальные значения индексов и приступить к разбиению списка}

L := pred(aFirst);

R := succ(aLast);

while true do

begin

repeat

dec(R);

until (aCompare(aList.List^[R], Pivot) <=0);

repeat

inc(L);

until (aCompare(aList.List^[L], Pivot) >=0);

if (L >= R) then

Break;

Temp := aList.List^ [L];

aList.List^[L] := aList.List^[R];

aList.List^[R] :=Temp;

end;

{затолкнуть больший подфайл в стек и повторить цикл для меньшего подфайла}

if (R - aFirst) < (aLast - R) then begin

Stack [SP] :=succ(R);

Stack[SP+1] := aLast;

inc(SP, 2);

aLast := R;

end

else begin

Stack[SP] := aFirst;

Stack [SP+1] :=R;

inc(SP, 2);

aFirst := succ(R);

end;

end;

end;

end;


procedure TDQuickSortNoRecurse( aList : TList;

aFirst : integer;

aLast : integer;

aCompare : TtdCompareFunc);

begin

TDValidateListRange(aList, aFirst, aLast, 'TDQuickSortNoRecurse');

QSNR(aList, aFirst, aLast, aCompare);

end;


И в этом листинге код состоит из двух процедур: процедуры-драйвера и процедуры собственно сортировки. Таким образом, общая схема работы алгоритма осталась неизменной, но в этом случае внутренняя процедура, QSNR, вызывается только один раз.

В процедуре QSNR объявляется стек Stack для хранения 64 элементов типа longint и указатель на стек SP, который будет указывать на начало стека. Комментарий жизнерадостно утверждает, что размера стека будет достаточно для хранения 2 миллиардов элементов. Через несколько минут мы докажем справедливость комментария. В начале процедуры в стек записываются переданные процедуре начальный и конечный индексы. Предполагается, что на индекс первого элемента указывает указатель стека, а индекс последнего элемента хранится в позиции SP+1. После записи индексов указатель стека перемещается на 2 позиции. (В реализации алгоритма может использоваться два стека: один для индексов aFirst, а второй - для индексов aLast. При этом для обоих стеков будет нужен только один указатель.)

Далее начинается выполнение цикла while, которое завершается, когда стек опустеет, что эквивалентно равенству SP=0.

В цикле из стека выталкиваются переменные aFirst и aLast и значение указателя стека уменьшается на 2. После этого мы входим в цикл, который присутствует и в стандартной быстрой сортировке. Он повторяется до тех пор, пока значение индекса aFirst не превысит значение индекса aLast. Заключительные операторы в цикле, где ранее находился рекурсивный вызов процедуры сортировки, представляют собой интересный блок кода. К этому моменту времени базовый элемент находится на своем месте, и подсписок успешно разбит на две части. Определяем, какая из частей длиннее и записываем ее в стек (т.е. заталкиваем в стек значения индексов его первого и последнего элемента) и переходим к меньшей части.

Давайте на минутку задумаемся, что происходит. Если нам несказанно повезло, и для каждого подсписка в качестве базового элемента были выбраны их действительные медианы, то размеры подсписков будут составлять ровно половину размера подсписка более высокого уровня. Если в исходном списке было, например, 32 элемента, он будет разбит на 2 подсписка по 16 элементов, каждый из которых, в свою очередь, будет разбит еще на два подсписка по 8 элементов и т.д. Таким образом, максимальная глубина вложения подсписков в стеке будет равна пяти, поскольку 2(^5^)=32. Подумайте над этим. Мы затолкнем в стек подсписок из 16 элементов, разобьем второй такой же список на два списка по 8 элементов, затолкнем в стек один из списков длиной 8 элементов, а второй разобьем на два подсписка по 4 элемента и т.д. Пока мы дойдем до подсписка с одним элементом, в стеке уже будут находиться подсписок из 16 элементов, подсписок из 8 элементов, подсписок из 4 элементов, подсписок из 2 элементов и подсписок из 1 элемента. Пять уровней. Таким образом, для сортировки списка, содержащего 2 миллиарда элементов, будет достаточно 32 уровней (как это указано в комментарии к процедуре QSNR), если, конечно, каждый раз мы будем удачно выбирать базовый элемент.

Однако приведенное выше доказательство справедливо только в том случае, если нам очень повезет, не правда ли? На самом деле, нет. Если каждый раз в стек помещать больший подсписок, а продолжать работать с меньшим, то глубину вложения подсписков будет определять именно меньший подсписок. Поскольку размер меньшего подсписка будет всегда меньше или равен половине разбиваемого списка, результирующая глубина стека не будет превышать глубину стека для описанного выше случая удачного выбора базового элемента. Таким образом, размера объявленного в процедуре стека окажется вполне достаточно.

Обратите внимание, что такое же улучшение можно было ввести и в рекурсивный алгоритм сортировки. При этом внутренняя процедура быстрой сортировки вызывалась бы для меньшего списка. Внесенное нами небольшое изменение гарантирует, что стек не будет переполнен, если алгоритм быстрой сортировки будет работать на "наихудшем" списке элементов.

Таким образом, нам удалось избавиться от рекурсии, но, как ни странно, экономия времени оказалась незначительной. Более того, в некоторых случаях последний алгоритм работает даже медленнее стандартного (можно предположить, что снижение скорости вызвано определением меньшего списка из двух). Известны и другие улучшения, но они также не дают значительного выигрыша в скорости.

Может быть, у некоторых читателей после изучения кода, приведенного в листинге 5.16, возникла идея написания кода, который бы выполнялся в случае, когда в подсписке находится менее трех элементов. Это и будет нашей следующей областью внесения изменений в алгоритм быстрой сортировки.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Фундаментальные алгоритмы и структуры данных в Delphi"

Книги похожие на "Фундаментальные алгоритмы и структуры данных в Delphi" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Джулиан Бакнелл

Джулиан Бакнелл - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi"

Отзывы читателей о книге "Фундаментальные алгоритмы и структуры данных в Delphi", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.