Димитри Маекс - Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть

Все авторские права соблюдены. Напишите нам, если Вы не согласны.
Описание книги "Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть"
Описание и краткое содержание "Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть" читать бесплатно онлайн.
Только представьте, как много вы могли бы сделать, если бы в ваших силах было выявить самых прибыльных клиентов своей компании, создать более качественную маркетинговую стратегию для общения с ними и вдохновлять их на то, чтобы покупать у вас еще больше.
Теперь все это вам по силам. И самое приятное заключается в том, что вы можете сделать все это с помощью данных, которые у вас уже есть. Ведь в наши дни все, что мы делаем, создает информацию, и ее объем невероятно велик. Каждый раз, когда кто-то просматривает веб-страницу, вводит поисковый запрос в Google или просто блуждает по Сети с помощью своего смартфона, он добавляет крошечный кусочек к огромному хранилищу данных, помогающих нам лучше понять и предсказать поведение потребителей.
В «Ключевых цифрах» автор в ясной и легкодоступной манере объясняет, как превратить эти данные в практически применимые стратегии, обеспечивающие рост и доходы. Более того, он показывает, каким образом можно проделать все это без дополнительных затрат.
Книга обязательна к прочтению:
– специалистам по маркетингу, стремящимся получить максимальный возврат на каждый доллар рекламного бюджета;
– владельцам небольших бизнесов, желающих быстрее расти;
– исследователям, старающимся лучше понимать потребителей, для которых создаются новые продукты или услуги;
– финансистам, отвечающим за увеличение прибыли компании;
– творческим работникам, пытающимся понять, как выглядит обратная связь и как можно ее улучшить.
Мы начали с изучения тенденций поведения организаций-клиентов, использовавших BTB только для звонков по телефону, и обнаружили, что их поведение как потребителей зависит от нескольких факторов.
1. Общее количество имеющихся у них линий. Ничего удивительного – чем больше линий, тем больше звонков будет делать организация.
2. Производственный сектор, в котором они работают. Например, судоходные компании делают больше звонков, чем другие.
3. Географический разброс бизнес-единиц организаций. Можно предположить, что сотрудники компании, имеющей подразделения в разных городах (или странах), будут проводить больше времени на телефоне, беседуя с клиентами и коллегами из других офисов.
У BTB имелось достаточно информации для проведения анализа по всем трем перечисленным факторам. Мы использовали их данные для создания алгоритма, позволявшего сравнивать «равное с равным». Нет смысла проводить сравнительный анализ потенциала дохода между консультационной фирмой, где работают два сотрудника, и международным колл-центром. Чтобы понять, где кроются самые интересные возможности, мы должны были придумать способ сравнить между собой компании из одной и той же отрасли.
Поэтому для начала мы рассчитали величину показателя «расходы» – величину ежемесячного счета для клиента в расчете на одну телефонную линию. Затем мы рассортировали всех клиентов BTB в зависимости от величины этого показателя. Теперь мы знали, сколько тратит каждый клиент – причем не только общую сумму, но и в разбивке по телефонным линиям. Например, мы знали, что компания A, занимающаяся арендой автомобилей и имеющая сорок отдельных телефонных линий, тратила на работу с BTB по 3 тысячи долларов, или 75 долларов в расчете на линию.
Затем мы сравнили компанию А со всеми остальными компаниями из нашей базы, занимавшимися сдачей автомобилей в аренду. Так как в данном случае свою роль смогли сыграть региональные особенности, мы сравнивали ее с компаниями, расположенными исключительно в регионе Корнуолла. Теперь давайте предположим, что первые 5 % компаний (с точки зрения расходов в расчете на линию) в регионе Корнуолла тратили в среднем по 120 долларов на линию. Это давало нам основания предположить, что такие компании тратили на работу с BTB все свои бюджеты в этой категории (то есть BTB имела 100 % доли их кошелька). Поскольку мы уже знаем, что расходы зависят от географии и сектора производства, то можем предположить, что и компания А в состоянии потратить 120 долларов в расчете на линию. Тот факт, что она платит BTB лишь 75 долларов, означает, что оставшиеся 45 долларов она отдает конкурентам, то есть мимо BTB уплывает значительная часть бюджета компании А – и на это имело смысл обратить внимание.
Чтобы убедиться в правильности нашего алгоритма, мы проверили его тремя способами: изучили данные по справочным службам; отследили всплески звонков; проанализировали данные третьих сторон. Позвольте мне подробнее объяснить, что именно мы сделали.
– Справочные службы. В среднем сопоставимые компании делают одно и то же количество звонков в справочную службу (предположим, такие звонки составляет 1 % от общего количества). Если моя компания совершает в день тысячу звонков, и десять из них делаются в справочную службу, то можно предположить, что BT имеет около 100 % моего бюджета, связанного с телефонным обслуживанием. Но если BT (которой принадлежит справочная служба) видит, что компания, совершающая сотню звонков в день в справочную службу, при этом делает через линии BT всего тысячу звонков за тот же период, то она может быть уверена: компания делает в день до десяти тысяч звонков (и девять тысяч из них – через кого-то еще). Разумеется, BT стоит внимательнее отнестись к этому клиенту.
– Всплески звонков. Многие клиенты арендовали у BT телефонные линии и ставили на них аппараты, переправлявшие звонки на других операторов. Если аппарат ломается, то все звонки начинают идти через BT. В результате возникает всплеск звонков, позволяющий BT увидеть, сколько звонков делает клиент на самом деле. Чем выше всплеск, тем меньше у BT доля кошелька. И наша модель подтвердила эту тенденцию.
– Данные третьих сторон. Не стоит полагаться исключительно на чужие данные, но они могут помочь вам лишний раз проверить свою работу. В нашем случае они подтвердили предположение о том, сколько денег тратят на телефонные службы компании, не относящиеся к клиентам BT.
Такая проверка обеспечила BT достаточную степень уверенности в правильности алгоритма. В результате наша довольно простая модель позволила British Telecom получить точный расчет количества звонков каждой компании из своей клиентской базы. Таким образом, для установления целевых ориентиров BT смогла использовать в качестве критерия показатель потенциального дохода (например, компания X тратила на телефонные услуги много денег, но из них на долю BT приходилось мало или вообще ничего).
British Telecom – сегментация
Успех проведенного анализа информации о доле кошелька позволил нам перейти к следующему этапу: создать презентацию о принципах строительства стратегии сегментации для всей компании BT.
Разумеется, рекламное агентство масштаба Ogilvy постоянно приглашают для выполнения творческих работ, но в данном случае все выглядело иначе. Мы собирались участвовать в конкурсе на аналитический проект. Наши руководители самого высокого ранга, понимая, что победа в таком конкурсе откроет нам двери к более широкому сотрудничеству с BT, были вынуждены выставить на передний план «ботаника» типа меня, а не команду творческих сотрудников, обычно делавших презентации для клиентов.
Перед тендером нервничали все, и я в том числе. Прежде всего мне нужно было написать все материалы самостоятельно. Кроме того, я никогда прежде не участвовал в подобном мероприятии. Английский – не мой родной язык. И хотя управляющий, отвечавший за отношения с BT, слышал, что я отлично управляюсь с цифрами, он не был уверен, сможет ли парень с забавным фламандским акцентом написать презентацию, а затем изложить ее на нормальном английском языке.
Однако у меня уже созрела отличная идея, каким образом мы сможем помочь BT. Я обратил внимание на две проблемы, которые можно было бы решить с помощью новых принципов сегментации.
Во-первых, BT необходимо понять, как вести себя с малыми и средними компаниями. В те времена, когда у BT была полная монополия, у нее не имелось никаких причин сегментировать свою клиентскую базу. Когда дело касалось поставщиков телефонных услуг, у людей не оставалось выбора, поэтому BT не имело смысла выделять кого-то. Теперь, выйдя на рынок небольших и средних компаний, она нуждалась в прозрачной стратегии сегментации.
За своими крупнейшими клиентами BT всегда закрепляла персонального управляющего, отлично знавшего, что нужно его клиенту. Так продолжалось и теперь, но компания нуждалась в развитии эффективной стратегии для работы и с другими категориями клиентов.
Во-вторых, BT необходимо понять, какие категории клиентов должны стать их целевыми группами в условиях сегодняшнего рынка, то есть с точки зрения предложения «новой волны» услуг: широкополосного доступа в Интернет, мобильной связи и информационно-коммуникационных технологий (в частности, услуги беспроводного доступа и обеспечение безопасности). В течение последних лет BT обращала внимание только на объемы телефонных звонков. Однако по мере развития рынка компания диверсифицировала свой портфель продуктов, и ей потребовалась новая сегментационная структура, позволявшая принять во внимание весь новый ассортимент услуг.
С целью решить эти две проблемы BT пыталась найти стратегию сегментации, которая могла бы:
• дать определение рынку небольших и средних компаний, включая не только текущих, но и перспективных клиентов;
• выявить конкретные потребности, для удовлетворения которых она могла бы предложить и продать больше услуг «новой волны»;
• позволить более эффективно распределять ресурсы;
• не только объяснять поведение клиентов в прошлом, но и предсказывать их шаги в будущем.
Мы предложили использовать комплексный подход, при котором компании-клиенты делились бы на группы с учетом как жестких (доходы, потенциал и риск), так и мягких факторов (потребности). Ниже приведен общий обзор такого подхода.
Выбор цели – с кем следует говорить
Жесткая сегментация позволяла сформировать основную характеристику компаний, с которыми хотела работать BT, – компании, стремившиеся к росту доходов. Мягкая сегментация позволила BT сделать общение с потенциальными клиентами более личным, основанным на знании потребностей каждой небольшой и средней компании. В этой главе мы сконцентрируем внимание на деталях жесткой сегментации, а о мягкой поговорим в следующей. (В третьей главе мы обсудим следующие темы: о чем нужно говорить с потенциальными клиентами; способ, с помощью которого BT объяснила небольшим и средним компаниям, каким образом те могли бы наращивать свои доходы; каким образом вы можете комбинировать жесткую и мягкую сегментацию в рамках интегрированного подхода.)
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть"
Книги похожие на "Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Димитри Маекс - Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть"
Отзывы читателей о книге "Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть", комментарии и мнения людей о произведении.