» » » » Иэн Стюарт - Истина и красота. Всемирная история симметрии.


Авторские права

Иэн Стюарт - Истина и красота. Всемирная история симметрии.

Здесь можно скачать бесплатно "Иэн Стюарт - Истина и красота. Всемирная история симметрии." в формате fb2, epub, txt, doc, pdf. Жанр: Математика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Иэн Стюарт - Истина и красота. Всемирная история симметрии.
Рейтинг:
Название:
Истина и красота. Всемирная история симметрии.
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Истина и красота. Всемирная история симметрии."

Описание и краткое содержание "Истина и красота. Всемирная история симметрии." читать бесплатно онлайн.



На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов. Эксцентричный Джироламо Кардано — игрок и забияка эпохи Возрождения, первым решивший кубическое уравнение, гениальный невротик и революционер-неудачник Эварист Галуа, в одиночку создавший теорию групп, горький пьяница Уильям Гамильтон, нацарапавший свое величайшее открытие на каменной кладке моста, и, конечно же, великий Альберт Эйнштейн — судьбы этих неординарных людей и блестящих ученых служат тем эффектным фоном, на котором разворачивается один из самых захватывающих сюжетов в истории науки.






Но у этой интуитивной мощи есть и оборотная сторона. Многие из важнейших Виттеновых идей, выведенных из физических принципов или аналогий, появились без доказательств, а в отношении некоторых доказательства отсутствуют и по сей день. Не в том дело, что он не может дать доказательства, — может, как показывает его Филдсовская медаль, — а в том, что он может делать логические скачки, ведущие к глубокой и верной математике, словно бы не нуждаясь в доказательствах.


Главный вопрос — имеет ли изящная виттеновская математика какое-нибудь отношение к фундаментальной физике? Или же поиски красоты завели в математический тупик, где потеряна всякая связь с физической истиной? К 80-м годам двадцатого века физики объединили три из четырех взаимодействий, имеющихся в природе: электромагнитное, слабое и сильное[109]. Но Теории Великого Объединения ничего не говорят о гравитации. Сила, которую мы наиболее непосредственно ощущаем в повседневной жизни, которая буквально не дает нам витать в облаках, исключена из синтеза — конфуз?

Достаточно несложно написать комбинированную теорию, включающую гравитацию и квантовую теорию и с виду выглядящую разумно. Но при всякой попытке решить получающиеся там уравнения возникает бессмыслица. Как правило, числа, призванные выражать разумные физические величины, оказываются бесконечными. Бесконечность в физической теории указывает: что-то идет не так. Именно появление бесконечности в законе излучения подтолкнуло Планка к квантованию света.

Некоторые физики пришли к убеждению, что основной источник бесконечностей — это укоренившаяся привычка рассматривать частицы как точечные. Точка — местоположение без размера — представляет собой математическую фикцию. Квантовые частицы — вероятностным образом размазанные точки, но это не приносит полного облегчения; требуются какие-то более сильные средства. Даже в 70-х годах двадцатого века несколько первооткрывателей начали думать, что частицы можно разумным образом смоделировать как колебания очень маленьких петель — «струн». В 80-х, когда в дело вступила суперсимметрия, эти струны превратились в суперструны.

О суперструнах можно написать целую книгу, и таких книг в самом деле существует уже несколько, но мы обойдемся очень приближенным описанием, получаемым в основном путем размахивания руками. Я хочу выделить четыре свойства: способ, которым объединяются релятивистская и квантовая картины, нужда в дополнительных измерениях, интерпретация квантовых состояний как колебаний в этих дополнительных измерениях и симметрии дополнительных измерений — или, точнее, различных полей, которые в них живут.

Начнем с эйнштейновской идеи представления траектории частицы в пространстве-времени в виде кривой, которую он назвал мировой линией данной частицы. По существу, это кривая, которую частица описывает в пространстве-времени по мере своего движения. В теории относительности мировые линии — гладкие кривые, что определяется видом полевых уравнений Эйнштейна. Они не ветвятся, потому что в теории относительности будущее любой системы полностью определяется ее прошлым, даже ее настоящим.

Имеется аналогичная концепция в квантовой теории поля, называемая фейнмановскими диаграммами. Фейнмановские диаграммы описывают взаимодействие частиц в весьма схематичном пространстве-времени. Например, на рисунке слева показана фейнмановская диаграмма для электрона, испускающего фотон, который затем улавливается другим электроном. По традиции фотоны обозначаются волнистыми линиями.

Слева: фейнмановская диаграмма для взаимодействующих частиц. Справа: соответствующие мировые листы, в сечениях которых показаны струны.

Фейнмановская диаграмма несколько напоминает релятивистскую мировую линию, но у нее острые углы и она ветвится. В 70-х годах XX века в голову Йоиширо Намбу пришла мысль, что если вместо гипотезы о том, что частицы точечные, принять, что они представляют собой маленькие петли, то фейнмановские диаграммы можно превратить в гладкие поверхности — мировые листы, как показано на правой картинке. Мировой лист можно интерпретировать как мировую линию в модифицированном пространстве-времени с дополнительными размерностями, в которых живут петли.

Что здорово насчет петель — помимо того что они не точки, — так это их способность колебаться. Быть может, каждая мода колебаний соответствует квантовому состоянию. Это позволит объяснить, почему квантовые состояния всегда содержат целые кратные некоторой базисной величины — например, спина, который всегда есть целое кратное √1/2. Число волн, помещающихся на петле, должно быть целым числом. На скрипичной струне эти различные моды колебаний являются основным тоном и его высшими гармониками. Так что квантовая теория становится определенного вида музыкой, исполняемой на суперструнах вместо скрипичных струн.

Идея Намбу не взялась из ниоткуда. Она уходит своими корнями в замечательную формулу, выведенную Габриэле Венециано в 1968 году, которая показывала, что по видимости различные фейнмановские диаграммы представляют один и тот же физический процесс и что стоит только обойти этот факт вниманием, как вычисления в квантовой теории поля приведут к неправильному ответу. Намбу заметил, что, когда фейнмановские диаграммы окружаются трубками, различные диаграммы приводят к системе трубок с одной и той же топологией. Другими словами, системы трубок можно деформировать друг в друга. Так формула Венециано оказалась связана с топологическими свойствами трубок.

Струны выталкиваются из обычного пространства-времени в новое измерение.

Это в свою очередь подсказывало, что квантовые частицы, несущие свои дискретные квантовые числа типа заряда, могут быть топологическими свойствами гладкого пространства-времени. Математики уже были свидетелями того, как основные топологические свойства — такие как число дыр на поверхности — имеют тенденцию к дискретности. Вроде все сходилось. Но дьявол, как всегда, сидит в деталях, а детали оказались дьявольскими. Теория струн была первой попыткой получить детали, пребывающие в согласии с реальным миром.


Теория струн возникла вовсе не как способ построить Теорию Всего, а как некоторое предложение, высказанное для объяснения частиц, известных под собирательным названием адронов[110]. Эти частицы включают в себя большую часть[111] обычных частиц, обнаруживаемых в атомных ядрах, таких как протон и нейтрон, а также толпу более экзотических частиц. Однако в теории есть изъян: она предсказывает существование частицы с нулевой массой и спином 2, которая до тех пор (как и поныне) не наблюдалась. Кроме того, она не смогла предсказать ни одной частицы со спином 1/2, в то время как многие адроны, включая протон и нейтрон, имеют спин 1/2. Это похоже на летний прогноз погоды, который предсказывает градины в полметра диаметром, но ничего не говорит о том, будет ли тепло. Физики не впечатлились. В 1974 году, когда на арене появилась квантовая хромодинамика и не только объяснила все известные адроны, но даже успешно предсказала новый (омега-минус), судьба теории струн представлялась решенной.

В тот момент, однако, Джон Шварц и Жоэль Шерк заметили, что нежеланная частица с нулевой массой и спином 2, возникающая в теории струн, могла бы оказаться давно искомым гравитоном — гипотетической частицей, которая, согласно современным представлениям, должна переносить гравитационную силу[112]. Могла ли теория струн оказаться квантовой теорией не адронов, а гравитации? Если да, то она стала бы привлекательным соперником Теории Всего — ладно, Теории Много Чего, потому что есть много частиц, не являющихся адронами.

В тот момент в игру вступила суперсимметрия, потому что именно она превращает фермионы в бозоны. Адроны включают в себя частицы обоих сортов, хотя ряд других частиц, например электрон, не являются адронами. Если суперсимметрию можно было бы включить в теорию струн, то в теоретической модели автоматически появился бы целый ряд новых частиц, возникающих как суперсимметричные партнеры тех частиц, что уже присутствовали в модели.

Комбинированная теория, созданная Пьером Рамоном, Андрэ Неве и Шварцем, была теорией суперструн. Она включала частицы со спином −2, и в ней не было неприятного свойства обычной теории струн — появления частиц, движущихся быстрее света. Присутствие таких частиц в теории теперь рассматривается как свидетельство неустойчивости, из-за чего такие теории следует исключить из рассмотрения.

Начиная с 1980 года британский физик-теоретик Майкл Грин постепенно разрабатывал математику суперструн, используя методы теории групп Ли и топологии, и вскоре стало ясно, что, независимо от имеющихся у нее верительных грамот со стороны физики, теория суперструн обладает необычайной математической красотой. Физики продолжали упорствовать: в 1983 году Луис Алварес-Гомэ и Виттен обнаружили новую загвоздку с теориями струн, включая и суперструны, а заодно и с доброй старой квантовой теорией поля. А именно — эти теории, как правило, обладали аномалиями. Аномалия возникает, когда процесс превращения классической системы в ее квантовый аналог изменяет важные симметрии.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Истина и красота. Всемирная история симметрии."

Книги похожие на "Истина и красота. Всемирная история симметрии." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Иэн Стюарт

Иэн Стюарт - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Иэн Стюарт - Истина и красота. Всемирная история симметрии."

Отзывы читателей о книге "Истина и красота. Всемирная история симметрии.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.