Анатолий Томилин - Хочу всё знать [1970]
![Анатолий Томилин - Хочу всё знать [1970]](/uploads/posts/books/408049.jpg)
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Хочу всё знать [1970]"
Описание и краткое содержание "Хочу всё знать [1970]" читать бесплатно онлайн.
«Хочу всё знать» (1970 г.) — альманах научно-популярных статей для детей.
ВНЕ ЗЕМЛИ
А. Томилин. Зачем мы летим в космос? Рис. Е. Войшвилло
П. Клушанцев. Какая ты, Венера? Рис. Е. Войшвилло
Геннадий Черненко. Прыжок с «эфирного острова». Рис. Е. Войшвилло
К. Ф. Огородников. Зачем нужна людям Луна? Рис. Е. Войшвилло
Г. Денисова. Растения в космосе. Рис. Ю. Смольникова
Геннадий Черненко. Дворец космоса
А. Антрушин. Лунная «земля»
Е. Войшвилло. Орбитальные станции. Рис. Е. Войшвилло
ЗЕМЛЯ
Н. Сладков. Нерукотворная красота. Рис. Ю. Смольникова
Б. Ляпунов. Люди океана и космоса. Рис. Ю. Смольникова
Л. Ильина. Черные бури. Рис. Ю. Смольникова
А. Быков. Каменная мумия. Фото автора
А. Муранов. Огненные стрелы небес. Рис. Ю. Смольникова
Л. Ильина. О ядохимикатах и насекомых. Рис. Ю. Смольникова
В ЛАБОРАТОРИЯХ УЧЁНЫХ
Ю. Коптев. Загадки три — разгадка одна. Рис. С. Острова
А. Томилин, Н. Теребинская. Три заповеди экспериментатора. Рис. С. Острова
Ю. Xарик. Должен ли уголь гореть? Рис. С. Острова
Ю. Коптев. Удерживает магнитное поле. Рис. С. Острова
А. Кондратов. Молодая наука о древностях. Рис. К. Претро
Ирина Фрейдлин. В дебрях микромира. Рис. К. Претро
Г. Григорьев. Там, где хранится память… Рис. К. Претро
Ю. Барский. Машина, ваш ход! Рис. С. Острова
Б. Бревдо. Поезд «на горе». Рис. С. Острова
СТРАНИЦЫ РЕВОЛЮЦИОННОГО ПРОШЛОГО
А. Новиков. «Какая увлекательная область…» Рис. В. Бескаравайного
А. Новиков. Идеи, изменяющие мир. Рис. В. Бескаравайного
Е. Мелентьева. «Из далёких времён». Рис. В. Бескаравайного
В. Санов. Искровцы возвращаются в строй. Рис. В. Бундина
П. Капица. Шура Маленькая. Рис. В. Бундина
Г. Мишкевич. В. И. Ульянов (Ленин) и Иван Бабушкин. Рис. В. Бундина
Р. Ксенофонтова. Три встречи с Лениным. Рис. В. Бундина
Л. Радищев. Ночной разговор. Рис. В. Бескаравайного
В. Нестеров. Флаг и герб Страны Советов
О. Туберовская. Три монумента славы. Рис. В. Тамбовцева
И. Квятковский. Бессмертный крейсер. Рис. В. Тамбовцева
Евг. Брандис. У истоков поэтической Ленинианы. Рис. В. Тамбовцева
ПРО ВСЯКОЕ
А. Пунин. Союз железа и бетона. Рис. Ю. Смольникова
Е. Озерецкая. «Чистое золото». Рис. В. Тамбовцева
О. Острой. Песня о Родине
Б. Раевский. Плитка шоколада. Рис. Б. Стародубцева
Т. Шафрановская. Гримасы моды. Рис. К. Претро
П. Белов. Кирилл Петрович
М. Любарский. Двадцать лет спустя. Рис. В. Бундина
Б. Рощин. По родному краю с миноискателем. Рис. В. Бундина
Р. Разумовская. Змеиный танец. Рис. К. Претро
На ином принципе работала дорога без трения, созданная в 1911—1913 годах в физической лаборатории Томского технологического института Б. П. Вейнбергом. Если Башле в своём проекте использовал отталкивание металлов от магнита, то наш соотечественник заставил работать притяжение. Железный вагон в опытах Вейнберга двигался в медной трубке, вдоль которой на некотором расстоянии друг от друга располагались электромагниты. Их сила была рассчитана так, что уравновешивала вес мчащегося в трубке вагона, и он всё время оставался между её «потолком» и «полом».
Но и эти эксперименты не привели к созданию дороги без машинистов и кондукторов. Однако небольшие её модели всё же были изготовлены. Одна из них до сих пор применяется на московском почтамте для транспортировки грузов.
Пока одни изобретатели пытались «подвесить» в магнитном поле вагончики безрельсовых дорог, другие старались заставить работать магнит в технических центрифугах, предназначенных для сушки материалов, разделения смесей на составляющие их элементы, для исследования материалов на прочность и ещё для многих, многих целей.
Допустим, нам надо высушить бельё. Загрузим его в барабан из сетки и начнём вращать барабан с большой скоростью. Под действием центробежных сил капельки воды через отверстия в сетке будут вылеётать с поверхности мокрого белья, и оно высохнет. Так же можно разделять и смеси. Если одно вещество смеси тяжелее другого, то оно быстрее осядет на стенку барабана (в этом случае она, конечно, сплошная), и его можно будет собрать. Все эти операции совершаются тем лучше, чем больше скорость центрифуг. Однако увеличить её мешало трение. Вот тогда-то и вспомнили о магнитной подвеске. А что, если заставить барабан центрифуги парить в воздухе? Но ведь и воздух тоже оказывает трение, хоть и маленькое. Значит, надо подвеску барабана производить в вакууме.
В 1937 году американец Холмс впервые воплотил эти идеи в жизнь, а уже через два года Франтишек Эйнгорн в Чехословакии довёл скорость вращения ротора центрифуги до 6 000 000 оборотов в минуту! Скорость частиц на поверхности его барабана достигала 9420 метров в секунду. Это на полторы тысячи метров в секунду больше первой космической скорости! И это не было пределом. Вскоре доктор Бимс из США довёл скорость своей «карусели» до 50 000 000 оборотов в минуту.
Но оставим это соревнование в скорости и посмотрим, где ещё может работать магнитное поле.
Уже давно было замечено, что кусок металла, помещённый в переменное магнитное поле, нагревается. (Именно поэтому и становился горячим вагон дороги, созданной Башле.) И чем выше частота поля, тем больше этот разогрев.
Помню, в детстве меня поразил в цирке такой фокус. На манеже был поставлен электрохолодильник. Вышел фокусник со сковородой и несколькими куриными яйцами. Держа сковородку над холодильником, он довольно быстро приготовил яичницу и с большим аппетитом съел её на глазах у зрителей. Не знаю, нравилось ли ему каждый день поедать яичницу, но зрителям этот фокус нравился. Тогда я был очень удивлён: как это можно на холодильнике жарить? И лишь позднее, прочитав учебник физики, убедился, что ничего таинственного или сложного здесь нет. Просто у фокусника в кожухе от холодильника был спрятан электромагнит. А если частоту переменного магнитного поля сделать довольно высокой, то выделяющегося тепла окажется вполне достаточно не только для того, чтобы поджарить яичницу, но и расплавить саму внесённую в поле сковородку. Стало мне понятно и то, почему фокусник с таким трудом удерживал, казалось бы небольшую и лёгкую, сковороду: её отталкивало от мнимого холодильника сильное магнитное поле.
Но не подумайте, что электромагнитное поле высокой частоты способно только показывать фокусы. Чтобы убедиться в этом, совершим экскурсию в ордена Ленина физико-технический институт имени А. Ф. Иоффе Академии наук СССР, в лабораторию, которой уже много лет руководит Александр Александрович Фогель. Ваше внимание наверняка привлечёт постоянный магнитик, стоящий у него на столе. В поле этого магнитика висит крупинка графита; она мала, не больше спичечной головки, но это только начало удивительной выставки. В следующем приборчике два магнитных брусочка расположены между стоек так, что их одноимённые полюсы расположены друг над другом. Верхний брусок неподвижно висит над нижним, и если нажать на него пальцем, то можно почувствовать, как сильно сопротивляется магнитное поле, — кажется, что между брусками находится невидимая пружина. В таких условиях мог бы висеть и легендарный гроб Магомета.
И, наконец, вам покажут основной прибор: два медных кольца, расположенных одно над другим. Их диаметр не более десяти сантиметров. К кольцам подведён электрический ток. Здесь же лежат тяжёлые металлические шары. Возьмём один из них (только осторожно, не уроните его себе на ногу) и попробуем просунуть через верхнее кольцо, Оказывается, это не так-то просто сделать. Магнитное поле, точно тугая сетка, натянутая в кольце, не пускает шар. Но вот с огромным усилием вам всё же удаётся просунуть его через кольцо. Теперь не бойтесь, отпускайте руку, шар будет спокойно висеть в пространстве между кольцами — «индукторами», как их называют в научной литературе, — ему не даст упасть магнитное поле нижнего кольца. Форма индукторов подбирается так, чтобы магнитное поле не только поддерживало шар, но и не давало уходить ему в сторону. Создаётся нечто вроде гамака, в котором и покоится металлический шар.
А зачем нужно это устройство, неужели просто так, чтобы поразить воображение посетителей?
Сейчас в науке и технике всё большее применение находят редкие металлы, такие как тантал, титан, цирконий и другие. Сплавы, созданные на их основе, обладают очень нужными для промышленности и научных исследований свойствами. Например, титановые сплавы чрезвычайно тугоплавки. Но вот беда, изготовить их очень трудно. Сами редкие металлы плавятся при высоких температурах (более 2,5 тысячи градусов для молибдена и ещё на тысячу градусов выше для вольфрама). Вот и расплавь их! Для этого требуются специальные печи. Обладают они и ещё одним «нехорошим» свойством — чрезвычайной активностью. Попробуйте расплавить ниобий в тигле. К концу плавки его там и не останется, он химически соединится с материалом тигля, станет его частью. Чего только не пробовали учёные, какие огнеупорные вещества не использовали для изготовления тиглей, и всё напрасно. Правда, с помощью невероятных ухищрений учёным всё-таки удавалось получать нужные им материалы необходимой чистоты, но затраты на их производство были настолько велики, что даже мельчайшие их крупинки хранились в сейфах как настоящие драгоценности.
Как же быть, как сделать редкие металлы чистыми и дешёвыми? Очевидно, следовало проводить все операции так, чтобы металлы не соприкасались ни с чем, а следовательно, и не пачкались. Плавку требовалось проводить в пустоте. Вот здесь-то и помогло учёным парение металлов в переменном магнитном поле.
Кусочек металла помещается в специальной вакуумной камере между магнитами-индукторами. Здесь он и покоится всё время, пока индуктор подключён к высокочастотным генераторам. Но «подвесить» металл — это ещё полдела. То же самое магнитное поле, которое делает его невесомым, может и расплавить его. Увеличим частоту поля, и вот уже наш кусочек металла прямо на глазах начинает нагреваться. Через две-три минуты мы уже не можем смотреть на него без тёмных очков, так ослепительно сияет это маленькое солнце — его температура сейчас две-три тысячи градусов. Все примеси испаряются от этого нестерпимого жара. Плавка окончена; щелчок переключателя, и вскоре остывший металлический шарик чистейшего металла извлекается из установки.
— Скоро ни один исследователь новых материалов не сможет обойтись без установки для электромагнитной подвески и плавки, — говорит Александр Александрович Фогель. — Они станут такими же необходимыми приборами, как микроскопы. Недаром разработкой этой методики занимаются ведущие фирмы и университеты США, Канады, Австрии, ФРГ. За ней большое будущее.
И это действительно так. Ведь при помощи разработанной в Физико-техническом институте установки можно не только получать сверхчистые материалы, а и изучать их свойства в жидком состоянии, изучать взаимодействие с различными газами. Можно исследовать и такие важные вопросы, как смачивание материалов: ведь, меняя магнитное поле, можно капельку расплавленного металла очень осторожно, без удара, опустить на какую-нибудь подложку из исследуемого материала и проследить, как она растекается. В общем, у магнитного поля-металлурга работы хватает.
ИЗ ЗАПИСОК ЛЮБОЗНАТЕЛЬНОГО АРХИВАРИУСА
Однажды во время своего обучения в Геттингене Нильс Бор плохо подготовился к коллоквиуму. Его доклад был слабым, но Бор не растерялся и под конец с улыбкой сказал:
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Хочу всё знать [1970]"
Книги похожие на "Хочу всё знать [1970]" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Анатолий Томилин - Хочу всё знать [1970]"
Отзывы читателей о книге "Хочу всё знать [1970]", комментарии и мнения людей о произведении.