» » » Вокруг Света - Журнал «Вокруг Света» №05 за 2007 год


Авторские права

Вокруг Света - Журнал «Вокруг Света» №05 за 2007 год

Здесь можно скачать бесплатно " Вокруг Света - Журнал «Вокруг Света» №05 за 2007 год" в формате fb2, epub, txt, doc, pdf. Жанр: Периодические издания. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
 Вокруг Света - Журнал «Вокруг Света» №05 за 2007 год
Рейтинг:
Название:
Журнал «Вокруг Света» №05 за 2007 год
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Журнал «Вокруг Света» №05 за 2007 год"

Описание и краткое содержание "Журнал «Вокруг Света» №05 за 2007 год" читать бесплатно онлайн.








И все же для настоящей революции этого было мало. Решающим событием стало получение белого света. Теперь светодиоды смогут использоваться не только в информационных и развлекательных системах, но и в освещении. А оно напрямую связано с мировой проблемой номер один — затратами на энергетику. Ведь только на освещение уходит около 35% всей вырабатываемой электроэнергии, а в мегаполисах даже раза в полтора-два больше.

И вот в разработку и производство «полупроводникового света» включаются крупные компании: держатель пионерских патентов японская фирма Nichia, американская Cree, европейские Lumileds, Philips, Osram, а также корейские фирмы, стремящиеся создать своего рода «Светодиодную долину»... Osram уже прикрыла ряд стекольных производств, предопределяя тот факт, что у ламп накаливания нет перспективы. Philips объявила о сворачивании ряда прибыльных электронных бизнесов ради развития «полупроводникового света», предпочитая сегодняшней твердой прибыли возможную завтрашнюю сверхприбыль. Шутка ли — войти в историю в качестве колумбов «нового света»?

Современные белые светодиоды по достигнутой светоотдаче (80— 120 лм/Вт) во много раз превзошли лампы накаливания и некоторые типы люминесцентных источников. Стремительно развиваются мощные светодиоды, ориентированные на освещение. Склонные к броским брендам американцы в 1995 году окрестили своего одноваттного (всего лишь) первенца «Барракудой»! Наука свое дело вчерне сделала, теперь очередь за промышленностью— наращивать люмены (люмен — единица светового потока в Международной системе единиц), снижать их стоимость, которая пока высока. К 2006 году себестоимость полупроводниковых источников света составляла 5—10 центов за люмен для одиночных излучателей со световым потоком 300—500 лм. Это эквивалент 60-ваттной лампочки накаливания, и обойдется он долларов в двадцать. Но, как говорится, лиха беда начало. К тому же в плюс следует записать традиционные полупроводниковые «фишки»: отсутствие вакуумированных баллонов и нитей накала, сверхминиатюрность, низковольтность, простоту управления свечением, долговечность, надежность, ударо-, взрыво- и пожаробезопасность, экологичность... С таким «джентльменским набором» достоинств можно уверенно выходить в свет.

  

С появлением суперъярких светодиодов стало возможно создание гигантских рекламных экранов, подобных тому, что занимает фасад этого 10-этажного торговоразвлекательного комплекса на центральной улице Токио

Люкс и люмен

Чувствительность глаза неодинакова по спектру, она максимальна в зеленой области и резко спадает к фиолетовому и красному краям. Ориентируясь на глаз как приемник света, вводят систему измерений, в которой равными принимаются такие воздействия, которые вызывают одинаковое зрительное ощущение, хотя физические приборы оценивают эти воздействия как разные. Единицей светового потока является люмен (лм), физиологическое действие потока в 1 лм одинаково во всем спектре, но его энергетическая «цена» для зеленой области составляет 1/683 Вт, для фиолетовой — 1/62 Вт, а для малиново-красной — 1/6 Вт. Поэтому глазу комфортнее в зеленой области, здесь фактическое воздействие («давление») на него наименьшее. Эффективность преобразования электрической мощности в световой поток характеризуют светоотдачей, измеряемой в люменах на ватт (лм/Вт). Ее иногда называют световым КПД, хотя ничего общего с действительным КПД эта величина не имеет. Шестидесятиваттная лампочка накаливания «выдает на-гора» 500 лм (8 лм/Вт), полутораметровая люминесцентная трубка — 5 000 лм, уличная натриевая лампа — 10 000—20 000 лм, а S-лампа с СВЧ-возбуждением («последний писк» западной осветительной моды) — 100 000 лм. Так что светодиодам есть кого догонять. Световой поток в 1 лм, приходящийся на площадку в 1 м2, обеспечивает освещенность в 1 люкс (лк); для чтения книги достаточно нескольких сот люксов, работа с мелкими деталями иногда требует освещенности в десятки тысяч люксов. Для источников направленного излучения определяющей становится пространственная плотность светового потока в заданном направлении, называемая силой света и измеряемая в канделах (1 кд = 1 лм/стерадиан). При этом стремятся «сжать» все излучение источника до требуемого угла. Так, для уличных светофоров надо обеспечить силу света 200—300 кд в пределах угла 20°, а для железнодорожного — 2 000—4 000 кд при расходимости 3°, чтобы машинист мог увидеть его издалека. Яркость источника определяется отношением силы света к площади излучателя и измеряется в кд/м2, к примеру, упомянутые уличные и железнодорожные светофоры имеют яркость около 10 и 100 тыс. кд/м2 соответственно, тогда как комнатному ТВ-экрану достаточно всего 500 кд/м2.

Упущенные приоритеты

Мировая светодиодная революция рубежа XX—XXI веков наметилась еще в 1922 году, когда Олег Лосев, лаборант Нижегородской радиолаборатории, заметил свечение некоторых точечных кристаллических диодов, которые использовались в радиоприемниках. Через 5 лет он специально занялся исследованием этого эффекта и продолжал их почти до конца жизни (О.В. Лосев скончался от истощения в блокадном Ленинграде в январе 1942 года, не дожив до 39 лет). Открытие Lossev Licht, как назвали эффект в Германии, где сам Лосев, так и не окончивший университет, публиковался в научных журналах, стало мировой сенсацией. Выяснилось, что свечение не было связано ни с разогревом, ни с электрическими разрядами, оно шло из кристалла и представляло собой «холодный свет», люминесценцию. К тому времени квантовая теория уже доказала, что при изменении состояния электронов в кристалле могут испускаться «частички света» — фотоны. Свечение было очень слабым и практического значения не имело, однако оно стало физической базой для создания светодиодов в будущем.

После изобретения транзистора (в 1948 году) и создания теории p-n-перехода (основы всех полупроводниковых приборов) стала понятна природа свечения и его низкая эффективность, причина которой оказалась в карбиде кремния (именно этим веществом занимался Лосев). Не решал проблемы и транзисторный кремний, нужны были полупроводники, не существовавшие в природе.

В 1953 году Генрих Велькер в Германии разработал теорию создания необходимых полупроводников из соединения элементов 3 и 5 групп Таблицы Менделеева и синтезировал некоторые из них, в частности арсенид галлия — основу будущих лазеров и светодиодов. Теперь разработку этих приборов можно было вести вполне осознанно и целеустремленно. Здесь стоит отметить, что аспирантка ленинградского Физтеха Нина Горюнова отчасти опередила работы Велькера, синтезировав в 1950 году сурьмянистый индий, но без публикации на Западе ее открытие осталось незамеченным и невостребованным. За свои недолгие 54 года профессор Н.А. Горюнова внесла огромный вклад в синтез сложных полупроводников, в том числе трех- и четырехкомпонентных, которые сегодня стали определяющими.

В 1962 году американец Ник Холоньяк сообщил о начале полупромышленного выпуска светодиодов. В них при протекании тока через p-n-переход электроны скачком изменяли свою энергию от некоторого равновесного уровня до уровня возбуждения, а их обратный переход сопровождался генерацией фотонов. Состав полупроводника (арсенид-фосфид галлия) обеспечивал такой зазор между этими уровнями, что испускался красный свет. Презентацию этого события в таблоидах озаглавили «Свет надежды», вроде бы обычный журналистский штамп, а оказалось — пророчество. И вновь Россия упустила свой приоритет: на полгода раньше в одном из «почтовых ящиков» был организован выпуск карбидокремниевых светодиодов для ядерной техники, но все засекретили, а первопроходцем в историю вполне оправданно вошел Холоньяк, получивший в 2003 году российскую премию «Глобальная энергия».

В 1970-е годы группа Жореса Алферова приспособила к светодиодам гетероструктуры (чередование слоев разных полупроводников вместо легирования, то есть добавления примесей), потом американцы подобрали для них очень хитрый полупроводник — алюминий-индий-галлий-фосфор «в одном флаконе» — эффективность возросла многократно. Но только для красного света, а полупроводник для фиолетового края спектра, нитрид галлия, десятилетиями не давался ученым. Но все же упорный японец Шуджи Накамура из фирмы Nichia ухватил жар-птицу за хвост, создав в 1993 году яркий синий светодиод, а еще через 2 года и белый. В сентябре 2006 года Накамура удостоен премии «Миллениум» (1 миллион евро) и «узаконен» как лидер светодиодной революции.

Подобные премии просто так не дают. Миниатюрный (2х2х0,3 мм3) и с виду простенький чип белого светодиода вобрал в себя последние достижения физики полупроводников и нанотехнологий. Его активную зону образуют два десятка чередующихся разнородных полупроводниковых пленок, содержащих нановкрапления состава «нитрид галлия-алюминия», которые называют квантовыми точками. Именно через них преимущественно протекает ток светодиода, в них рождаются фотоны, соответствующие синему свету. Сквозь другие области этот свет беспрепятственно выходит наружу. На поверхность чипа нанесена пленка люминофора, преобразующего часть светового потока в зелено-желто-красные тона, в результате чего образуется белый свет. Отметим, что объем излучающей зоны мощного светодиода в десятки тысяч раз меньше объема вольфрамовой нити лампы накаливания той же силы света.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Журнал «Вокруг Света» №05 за 2007 год"

Книги похожие на "Журнал «Вокруг Света» №05 за 2007 год" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Вокруг Света

Вокруг Света - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о " Вокруг Света - Журнал «Вокруг Света» №05 за 2007 год"

Отзывы читателей о книге "Журнал «Вокруг Света» №05 за 2007 год", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.