А Ольховатов - Тунгусское сияние
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Тунгусское сияние"
Описание и краткое содержание "Тунгусское сияние" читать бесплатно онлайн.
Можно считать, что магнитные силовые линии, придуманные Михаилом Фарадеем (1791 - 1867) [в отличие от имени Ньютона, имя Фарадея у нас часто пишут "на аглицкий манер" - Майкл], приобретают теперь и такой смысл: магнитная силовая линия - это зримый образ кванта магнитного потока - флюксоида.
Например, нет силовых линий - нет магнитного поля, нарисована одна линия - есть поле с одним квантом магнитного потока, две линии - два кванта Фд (два флюксоида) и так далее.
Флюксоиды и квантованность момента импульса. Теперь докажем небольшую теорему, которая показывает, что существование флюксоидов - следствие квантованности момента импульса частиц. Эта теорема не только позволит элементарно получить величину кванта магнитного потока, но и заставит нас по-новому взглянуть на самые основы физики. Теорема. Электрически заряженная частица движется в постоянном однородном магнитном поле по окружности (спирали), охватывающей целое число квантов магнитного потока.
Доказательство. Для простоты рассмотрим движение в вакууме частицы с массой m и скоростью v в однородном и постоянном магнитном поле Н в плоскости, нормальной к вектору напряженности магнитного поля. В поле Н частица будет двигаться под действием силы Лоренца evH/c = реН, уравновешенной центробежной силой ym-v^T = Рр/г, где е - электрический заряд частицы, у - лоренц-фактор частицы, равный (1 - Р)'^, р = v/c (наше доказательство справедливо и для релятивистского движения - со скоростью v близкой к скорости света с), r - радиус окружности, по которой движется частица, Р = урте^ - импульс частицы в единицах энергии. Отсюда имеем Н == Р/ге.
Теперь найдем магнитный поток, ограниченный траекторией частицы окружностью радиуса г:Ф == яг^Н = = Ргп/е (подставили полученное выше выражение для Н). Но Рг/с - модуль момента импульса вращающейся по окружности частицы, который, как известно из квантовой
механики, квантован, то есть целочисленен постоянной Планка h: Pr/c = lh, где I = 0,1,2,3,... - целое число, называемое орбитальным квантовым числом. Следовательно, Ф = (7thc/e)l = Фд1, что и требовалось доказать.
Как видите, в процессе доказательства мы получили величину кванта магнитного потока Фд = ясЬ/е.
А если частица имеет ненулевую составляющую импульса на вектор напряженности магнитного поля H, то она, как известно, будет двигаться в поле Н по спирали. И эта спираль, легко видеть, также будет охватывать целое число квантов магнитного потока. Иначе и быть не может, если представлять, что силовые линии магнитного поля - это образы квантов магнитного потока - флюксоидов. Флюксоиды порождают волны де Бройля и спины частиц. Французский принц Луи де Бройль [во Франции уже давно воцарилась республиканская форма правления и принцы там работают, как и остальные граждане] первым обнаружил, что со всеми частицами связаны волновые процессы, которые ранее были известны только для механических колебаний (маятник, волны на воде), для звука и для частиц света - фотонов. Он же первым построил диковинный атом с электронами, которые удалены от ядра преимущественно на расстояниях, кратных длинам волн де Бройля. Такой атом поглощает и испускает свет (как микроскопический музыкальный инструмент - звук) вполне определенных частот, что в принципе объяснило наблюдаемые линейные спектры излучения и поглощения атомов.
Модель де Бройля вскоре математически развил австриец Эрвин Шрёдингер, написав свое знаменитое волновое уравнение (уравнение Шрёдингера). Его абстрактными пси-функциями стали моделировать целые океаны толкущихся, взаимодействующих друг с другом (интерферирующих) волн де Бройля. Откуда же берутся эти волны, какова их природа, было совершенно непонятно. А математический смысл понятен: амплитуда волн определяет вероятность найти частицу (или систему частиц) в данный момент времени в данном месте пространства в данном состоянии.
Теперь же мы видим, что радиус вращения заряженной частицы в магнитном поле одного флюксоида r = hc/P = h/p - ни что иное, как длина волны де Бройля данной частицы - её фундаментальная квантовая характеристика! А что у частиц, не имеющих электрического заряда? И у них то же - ведь в формулу для длины волны де Бройля заряд не входит. Кроме того, мы знаем, что величина кванта магнитного потока Фд по Ф. Лондону обратно пропорциональна заряду электрона е - типичному кванту заряда макроскопических атомных тел. Но в природе существуют элементарные частицы с другими зарядами: 0 (незаряженные частицы), 1/3 и 2/3 (заряды кварков), 2,3 и т.д. (всё в единицах е). Возникает законный вопрос; а не существует ли для каждого заряда частицы е* (включая нулевой заряд) свой собственный квант магнитного потока Ф* = Tich/e*? Если считать, что существует, то длина волны де Бройля, определенная как радиус вращения частицы в магнитном поле собственного флюксоида Ф*, приобретает универсальный характер.
В этом случае движущаяся частица всегда порождает около себя свой "персональный" квант магнитного потока, в котором она вращается по окружности с радиусом длины волны де Бройля. Такое "собственное вращение" естественно связать со спином частицы: спин - вихревое движение частицы в магнитном поле собственного флюксоида. Так что флюксоиды дарят нам и наглядный образ этого ранее совершенно таинственного понятия, которое в 1924 году ввели в квантовую механику, как говорят теоретики, "руками" - спин проявился сначала в экспериментах, а уж потом для него придумали теоретическую модель.
Иная судьба была уготована магнитным зарядам, существование которых также следует из существования флюксоидов.
Мир магнитных зарядов
Магнитные заряды. Сначала покажем, что магнитный заряд - прямое следствие факта квантованности магнитного потока.
Действительно, в случае существования магнитных зарядов е^ и квантов магнитного потока Ф* по известной теореме Остроградского - Гаусса для потока Ф магнитной индукции В через замкнутую поверхность S, внутри которой сосредоточен суммарный магнитный заряд ^е^, можно записать: Ф =
пФ* = J BdS = 4я^е^ (также, как для электрических зарядов
s
е* поток электрической индукции D равен J DdS = 4я1е*).
S
Здесь п - натуральное число. При п = 1 получаем минимальное отличное от нуля значение суммы магнитных зарядов X е^ = Ф*/4я = е^ (при данном кванте магнитного потока Ф*) - более мелкие (дробные) магнитные заряды могли бы соответствовать только меньшим значениям Ф*.
Таким образом, если существуют кванты магнитного потока Ф*, то существуют и кванты магнитного заряда е^ = ch/4e*.
Вообще же возможен ряд значений "обобщенного" магнитного заряда е^ = (ch/4e*)n, где п - натуральное число (п = 1,2,3,...).
Представление о магнитных зарядах ввел в физику в 1931 году знаменитый английский физик Поль Дирак. Он назвал их магнитными монополями.
Дирак показал, что магнитный заряд должен иметь величину е^ = (ch/2e)n, где с - скорость света в вакууме, h - постоянная Планка, е заряд электрона, п - натуральное число (1,2,3,..). Легко видеть, что дираковский магнитный заряд вдвое больше нашего "обобщенного", и ряд "обобщенных" зарядов (при разных значениях числа п) включает в себя дираковские заряды.
Появление в физике магнитных зарядов - источников магнитного поля усилило симметрию [гр. - соразмерность, гармония] электрических и магнитных полей. Действительно, оба заряда определяются друг через друга совершенно одинаково: е^ = (ch/4e*)n и е* = (ch/4e^)n. И если есть заряды одного типа - электрические, то должны быть и заряды другого типа - магнитные.
"Магнитные" миры. После введения в физику магнитных зарядов уравнения Максвелла, описывающие все классические
электромагнитные явления, становятся совершенно симметричными относительно электрических и магнитных характеристик любых процессов. И допускают их взаимную "подмену".
Например, вместо электрического тока можно рассматривать поток магнитных зарядов - магнитный ток. Как около электрического тока возникает кольцевое магнитное поле (силовые линии магнитного поля замкнуты), так и около магнитного тока возникнет кольцевое электрическое поле (с замкнутыми силовыми линиями электрического поля).
Так же, как работает обычный электродвигатель, мог бы работать и "магнитодвигатель". Только в последнем, например, вместо магнитных материалов использовались бы диэлектрики.
Теперь мы можем даже представить себе "зеркальный магнитный мир", подобный нашему, в котором все электрические заряды заменены на магнитные, а магнитные - на электрические. И, соответственно, там, где у нас присутствуют магнитные поля, у "них" будут поля электрические и наоборот.
В таком "магнитном" мире около атомных ядер из "слипшихся" тяжелых магнитных монополей одного знака будут вращаться легкие магнитные монополи другого - противоположного знака - "магнитные электроны".
Эти "магнитные" атомы могут быть гораздо больше или гораздо меньше наших привычных "электрических" атомов. Из "магнитных" атомов могут состоять "магнитные" молекулы, "магнитные" звезды и планеты, "магнитные" растения и животные. И, конечно, могут существовать "магнитные люди" великаны или "магнитные люди" - лилипуты, живущие на своих, соответственно, гигантских или на микроскопических планетах.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Тунгусское сияние"
Книги похожие на "Тунгусское сияние" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "А Ольховатов - Тунгусское сияние"
Отзывы читателей о книге "Тунгусское сияние", комментарии и мнения людей о произведении.