Вокруг Света - Вокруг Света 2006 №03

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Вокруг Света 2006 №03"
Описание и краткое содержание "Вокруг Света 2006 №03" читать бесплатно онлайн.
Эффект Доплера и красное смещение
В обычной жизни мы постоянно сталкиваемся с эффектом Доплера. Когда мимо несется машина с включенной сиреной, то частота ее звука меняется при движении. Этот эффект связан с обычным движением в воздухе, и величина сдвига частоты зависит от скорости источника в момент излучения. Пусть источник приближается к нам. Тогда каждый новый гребень звуковой волны будет приходить к нам раньше, чем если бы источник был неподвижен. Поэтому мы и слышим изменение тона сирены. Световой эффект Доплера несколько отличается от звукового. Однако для малых скоростей формулы для светового и звукового эффекта Доплера совпадают. В эффекте Доплера после того, как фотон испущен, с ним уже ничего не происходит. В случае космологического красного смещения дело обстоит совсем по-другому, поскольку это смещение является эффектом не специальной, а общей теории относительности и связано именно с расширением пространства.
Превращения фотона
Свет всегда излучается с некоторой определенной длиной волны и энергией кванта. Но, распространяясь в расширяющейся Вселенной, он как бы растягивается, «краснеет». В случае сжатия Вселенной наблюдался бы обратный эффект — посинение. Если когда-то давно какая-либо галактика излучила фотон с некой длиной волны, а сейчас мы его видим, как фотон с другой длиной волны, то, исходя из красного смещения, равного разности этих длин, поделенной на исходную длину волны фотона, можно сказать, во сколько раз за это время растянулась Вселенная. Для этого нужно к красному смещению прибавить единицу: если оно равно 2, то, значит, Вселенная растянулась в три раза с того момента, когда был излучен фотон.
Важно отметить, что при этом сравниваются размеры (космологи говорят о масштабном факторе) в момент излучения и в момент приема фотона. А вот то, что происходило между этими моментами, не так существенно: Вселенная могла раздаваться с постоянной скоростью, могла расширяться то быстрее, то медленнее, могла вообще в какой-то момент сжиматься. Важно только то, что за это время все космологические расстояния возросли в три раза. Именно об этом говорит красное смещение, равное 2.
«Растяжение» фотона по дороге от источника к наблюдателю принципиально отличается от обычного эффекта Доплера. Рассмотрим движущийся с некоторой скоростью космический корабль, излучающий световые волны во все стороны. В этом случае наблюдатели, находящиеся впереди корабля, будут видеть посиневшие фотоны, то есть фотоны с большей энергией, а наблюдатели позади увидят покрасневшие фотоны с меньшей энергией. В сумме же энергия всех фотонов будет неизменной — сколько джоулей корабль излучил, столько же все наблюдатели и уловили. В космологии все по-другому. Излучающая во все стороны галактика для находящихся по разные стороны (но на равном расстоянии) наблюдателей будет выглядеть одинаково покрасневшей. Хотя с точки зрения обычной логики такое рассуждение кажется странным. И в этом плане космологическое красное смещение похоже на гравитационное, при котором фотоны краснеют, преодолевая поле притяжения испустившей их звезды.
Таково свойство Вселенной: кинетическая энергия всех частиц и волн — галактик, пылинок, протонов, электронов, нейтрино, фотонов и даже гравитационных волн уменьшается из-за расширения пространства. Это явление напоминает некоторые эффекты, наблюдаемые в нестационарных и незамкнутых системах. Известно, что если в системе фундаментальные константы зависят от времени, то энергия не сохраняется. Например, в мире с периодически изменяющейся гравитационной постоянной можно было бы поднимать груз, когда постоянная мала, и сбрасывать — когда велика. В результате получился бы выигрыш в работе, то есть стала бы возможной добыча энергии за счет непостоянства гравитационной постоянной.
В нашем мире от времени зависит сама метрика пространства, поскольку Вселенная расширяется. Находясь в нестационарном мире, можно констатировать, что энергия фотона в расширяющейся Вселенной падает. К счастью, все глобальные физические изменения у нас происходят крайне медленно и на обычной жизни никак не сказываются.
Скорость удаления галактики за счет космологического расширения может быть любой, в том числе и больше скорости света. Дело в том, что она при этом никуда не движется по пространству (ее координаты на раздувающемся шарике не меняются). Кинетическая энергия с этой скоростью не связана, поэтому при замедлении расширения Вселенной никакая энергия не выделяется. Галактика, разумеется, может иметь и «обычную» скорость, например, за счет гравитационного взаимодействия с другими галактиками. В космологии такую скорость называют пекулярной. Разумеется, в реальной жизни астрономы наблюдают суммарный эффект: галактика имеет красное смещение, связанное с космологическими процессами, а в дополнение к этому фотоны испытывают красное (или синее) смещение за счет эффекта Доплера, связанного с пекулярной скоростью. Иногда добавляется еще и гравитационное красное смещение, вызванное собственным полем тяжести светящегося объекта. Разделить эти три эффекта для индивидуального источника нелегко. Заметим, что для небольших во вселенском масштабе расстояний формула, связывающая красное смещение и скорость разбегания, совпадает с формулой для обычного эффекта Доплера. Порой это даже приводит к путанице, поскольку физика эффектов различна, и для больших расстояний формулы сильно отличаются. Красное смещение является очень удобной и общепринятой величиной для обозначения того, как далеко в пространстве и как давно во времени произошло то или иное событие, наблюдаемое сегодня земными астрономами.
Линейка для Вселенной
Следует заметить, что любые связанные объекты не участвуют в космологическом расширении. Длина эталонного метра, находящегося в Палате мер и весов (и его современного лазерного аналога), не изменяется с течением времени. Именно поэтому и можно говорить об увеличении физического расстояния между галактиками, которое можно этим (постоянным!) метром измерить. Наиболее близкое к общепринятому пониманию — это так называемое собственное расстояние. Для его определения необходимо, чтобы множество наблюдателей, расположенных на линии, соединяющей две галактики, провели одновременное измерение расстояний, отделяющих их друг до друга, с помощью обычных линеек. Затем все эти данные надо передать в единый центр, где, сложив все результаты, можно будет определить, каким было расстояние во время измерения. Увы, но к моменту получения результата оно уже изменится за счет расширения. К счастью, астрономы научились по видимому блеску источников известной светимости вычислять собственное расстояние. Очень часто о расстоянии говорят в терминах красного смещения. Чем больше красное смещение, тем больше расстояние, причем для каждой космологической модели выведены свои формулы, связывающие эти две величины. Например, квазар GB1508+5714 с красным смещением 4,3 в общепринятой сейчас модели Вселенной расположен на расстоянии 23 миллиарда световых лет от нашей Галактики. Приходящий сегодня от него свет был испущен всего через миллиард лет после Большого взрыва и находился в пути около 13 миллиардов лет. Возраст Вселенной в этой модели составляет 14 миллиардов лет.
Как же это возможно?
Часто даже профессионалы (физики, астрономы) на вопрос: «Можно ли наблюдать галактику, которая и в момент излучения ею света, и в момент приема ее сигнала на Земле удаляется от нас быстрее света?» — отвечают: «Конечно, нельзя!» Срабатывает интуиция, основанная на специальной теории относительности (СТО), которую один космолог метко назвал «тени СТО». Однако этот ответ неправильный. Оказывается, все-таки можно. В любой космологической модели скорость убегания линейно растет с расстоянием. Это связано с одним из важнейших принципов — однородностью Вселенной. Следовательно, существует такое расстояние, на котором скорость убегания достигает световой, а на больших расстояниях она становится сверхсветовой. Та воображаемая сфера, на которой скорость убегания равна световой, называется сферой Хаббла.
«Как же это возможно! — воскликнет читатель. — Неужели специальная теория относительности неверна?» Верна, но противоречия здесь нет. Сверхсветовые скорости — вполне реальны, когда речь идет не о переносе энергии или информации из одной точки пространства в другую. Например, солнечный зайчик может двигаться с любой скоростью, нужно только установить экран, по которому он бежит, подальше. СТО «запрещает» лишь передачу информации и энергии со сверхсветовой скоростью. А для переноса информации нужен сигнал, распространяющийся по пространству, — расширение самого пространства тут ни при чем. Так что в нашем примере про удаляющиеся галактики с теорией относительности все в полном порядке: со сверхсветовой скоростью они удаляются лишь от земного наблюдателя, а по отношению к окружающему пространству их скорость может вообще быть нулевой.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Вокруг Света 2006 №03"
Книги похожие на "Вокруг Света 2006 №03" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о " Вокруг Света - Вокруг Света 2006 №03"
Отзывы читателей о книге "Вокруг Света 2006 №03", комментарии и мнения людей о произведении.