Георг Вильгельм Фридрих Гегель - Учение о понятии

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Учение о понятии"
Описание и краткое содержание "Учение о понятии" читать бесплатно онлайн.
К 200-летию «Науки логики» Г.В.Ф. Гегеля (1812 – 2012)
Первый перевод «Науки логики» на русский язык выполнил Николай Григорьевич Дебольский (1842 – 1918). Этот перевод издавался дважды:
1916 г.: Петроград, Типография М.М. Стасюлевича (в 3-х томах – по числу книг в произведении);
1929 г.: Москва, Издание профкома слушателей института красной профессуры, Перепечатано на правах рукописи (в 2-х томах – по числу частей в произведении).
Издание 1929 г. в новой орфографии полностью воспроизводит текст издания 1916 г., включая разбивку текста на страницы и их нумерацию (поэтому в первом томе второго издания имеется двойная пагинация – своя на каждую книгу). Единственным содержательным отличием двух изданий является текст предисловий в первом томе:
1916 г.: Предисловие к русскому переводу, стр. VII – XXII;
1929 г.: От издательства, стр. VII – XI.
В переводе Н.Г. Дебольского встречаются устаревшие на сегодня слова, формы слов и обороты речи.
Особенности электронного издания:
1. Состоит из трех файлов – по числу книг в произведении. В первом файле приводятся предисловия обоих изданий. В третьем файле не приводится алфавитный указатель ко всему произведению (стр. 219 – 222 бумажного издания).
2. Текст печатается с пагинацией, номер страницы указывается в ее начале нижним индексом в фигурных скобках.
3. Весь текст приводится в современной орфографии (например, в отличие от издания 1929 г. используется твердый знак «ъ» вместо апострофа «’»). Слово «Бог» и относящиеся к нему местоимения (напр., «Он») пишутся с большой буквы. Ударение над русской буквой о передается с помощью буквы европейского алфавита ó.
4. Немецкие слова и выражения приводятся в старой орфографии печатных изданий (напр., «Seyn»).
5. Разрядка текста заменена курсивом (курсив, используемый в бумажных изданиях крайне редко, сохранен).
6. Формулы с дробями приведены к линейному виду. В качестве знака умножения используется звездочка (*).
7. Греческие слова и выражения приводятся без диакритических знаков.
8. Проверка выбранного шрифта: греческая альфа (α), буквы немецкого алфавита (äöüß).
Аксиомы, – чтобы упомянуть о них по этому поводу, – принадлежат к тому же классу. Неправильно считают их обычно за абсолютно первое, не требующее в себе и для себя никакого доказательства. Если бы так было в действительности, то они были бы просто тожесловиями, так как лишь в отвлеченном тожестве нет никакого различия, стало быть для него не требуется никакого опосредования. Если же аксиомы суть нечто большее, чем тожесловия, то они суть предложения из какой-либо другой науки, так как для той науки, которой они служат аксиомами, они должны быть предположениями. Поэтому они суть собственно теоремы и притом по большей части относящиеся к логике. Аксиомы геометрии суть также леммы, логические предложения, которые впрочем потому приближаются к тожесловиям, что они касаются лишь величин, и поэтому качественные различения в них упразднены; о главной аксиоме, о чисто количественном умозаключении, была речь уже выше. Поэтому аксиомы так же, как определения и разделения, рассматриваемые в себе и для себя, требуют некоторого доказательства и лишь потому не превращаются в теоремы, что, как относительно первые, для известной точки зрения признаются предположениями.
По поводу содержания теорем следует сделать то ближайшее различение, что так как оно состоит в некотором отношении определенностей реальности понятия, то эти отношения могут быть как более или менее неполными и единичными отношениями предмета, так и таким отношением, которое охватывает все содержание реальности и выражает собою его определенное отношение. Но единство полных определенностей содержания тожественно понятию; содержащее его предложение есть само поэтому опять-таки определение, которое однако выражает собою не только непосредственно усвоенное, но и развитое в его определенных, реальных различениях понятие или полное существование последнего. То и другое вместе представляет собою идею.
При ближайшем сравнении теорем какой-либо синтетической науки, и именно геометрии, получается то различение, что некоторые из ее теорем содержат в себе лишь единичные отношения предмета; другие же – такие отношения, в коих выражается полная определенность предмета. Очень поверхностен тот взгляд, по которому все эти предложения считаются равноценными на том основании, что каждое вообще содержит в себе некоторую {186}истину и в формальном ходе изложения, в связи доказательства, равно существенно. Различение содержания теорем само теснейшим образом связано с этим ходом; некоторые дальнейшие замечания о них послужат к тому, чтобы ближе осветить как это различение, так и природу синтетического познания. Прежде всего уже искони прославляется порядок расположения теорем в евклидовой геометрии, которая должна служить представительницею синтетического метода, представляющая самый совершенный его образец; в ней каждой теореме всегда предпосылаются, как ранее доказанные, те предложения, которые требуются для построения и доказательства этой теоремы. Но это обстоятельство касается формальной последовательности; как ни важна последняя, оно все же касается более внешнего расположения и сама по себе не имеет отношения к существенному различению понятия и идеи, в коем заключается более высокий принцип необходимого движения вперед. А именно определения, с которых начинают, берут чувственный предмет, как непосредственно данный, и определяют его по его ближайшему роду и видовой особенности, которые также суть простые непосредственные определенности понятия, общность и частность, отношение коих далее не развивается. Теоремы, служащие началом, сами по себе и не могут опираться ни на что иное, кроме таких непосредственных данных, какие заключаются в определениях; равным образом их взаимная зависимость ближайшим образом может состоять лишь в том общем, что одна вообще определена другою. Таким образом первые предложения Евклида о треугольниках касаются лишь совпадения, т.е. вопроса о том, сколько частей какого бы то ни было треугольника должно быть определено, чтобы вообще были определены прочие части одного и того же треугольника или иначе весь треугольник. Что два треугольника сравниваются один с другим, и совпадение полагается в покрытии одного другим, – это окольный путь, которого требует метод, долженствующий пользоваться чувственным покрытием вместо мысли: определенность. Независимо сего, рассматриваемые для себя, эти теоремы содержат сами две части, из коих одна должна считаться понятием, а другая – реальностью, восполняющею первую в реальность. А именно полное определение, напр., две стороны и заключенный между ними угол, есть уже для рассудка целый треугольник; оно ни в чем не нуждается далее для полной определенности треугольника; прочие два угла и третья сторона есть избыток реальности над определенностью понятия. Поэтому последствие этих теорем состоит собственно в том, что они сводят чувственный треугольник, требующий во всяком случае трех сторон и трех углов, к его простейшим условиям; определение (definitio) вообще упоминает лишь о трех линиях, замыкающих плоскую фигуру и образующих из нее треугольник; и эта теорема содержит в себе выражение определенности углов в силу определенности сторон, прочие же теоремы – зависимость остальных трех частей от упомянутых трех частей. Но полная определенность величины треугольника по его сторонам содержит внутри себя самой пифагорову теорему; лишь последняя есть уравнение {187}сторон треугольника, так как рассмотрение двух вышеуказанных сторон треугольника приводит за собою вообще только взаимную определенность его сторон, а не какое-либо уравнение. Поэтому пифагорова теорема есть полное реальное определение треугольника, именно ближайшим образом прямоугольного, простейшего в своих различениях и потому наиболее правильного. Евклид заканчивает этою теоремою первую книгу, так как она (теорема) есть действительно достигнутая полная определенность. Так же точно после того, как он перед тем сводит непрямоугольные треугольники, коим присущая бóльшая неправильность, к равномерным, прямоугольным, он заканчивает вторую книгу сведением прямоугольника к квадрату, – уравнением между саморавным, квадратом, и несаморавным, прямоугольником; таким же образом гипотенуза, соответствующая прямому углу, саморавному, составляет в пифагоровой теореме одну часть уравнения, а два катета, несаморавное, – другую. Сказанное уравнение между квадратом и прямоугольником ложится в основание второго определения круга, – которое опять-таки есть пифагорова теорема, поскольку катеты принимаются за переменные величины; первое уравнение круга находится в том же отношении чувственной определенности к уравнению, в каком вообще находятся между собою два различных определения конического сечения.
Это поистине синтетическое движение вперед есть переход от общего к единичности, именно к определенному в себе и для себя или к единству предмета внутри себя самого, поскольку предмет в своих существенных реальных определенностях выходит из себя и различается. Но вполне несовершенное, обычное движение в других науках допускается тогда, когда началом, правда, служит общее, но переход от него к единичному и конкретному есть лишь приложение общего к привходящему откуда-то извне материалу; собственное единичное идеи есть таким образом некоторая эмпирическая прибавка.
Но какое бы, несовершенное или совершенное, содержание ни имела теорема, она должна быть доказана. Она есть отношение реальных определений, не обладающих отношением определений понятий; если они и имеют последние (определения), как может быть указано относительно предложений, которые мы назвали вторыми или реальными определениями, то последние именно потому суть с одной стороны те определения, которые именуются definitiones; но так как их содержание вместе с тем состоит из отношений реальных определений, а не просто из отношений некоторого общего и простой определенности, то они по сравнению с первым таким definitio также требуют доказательства и допускают его. Как реальные определения, они имеют форму существующих безразлично и различных; поэтому они не суть непосредственно одно; надлежит вследствие того указать их опосредование. Непосредственное единство в первом определении есть то, в силу которого частное включается в общее.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Учение о понятии"
Книги похожие на "Учение о понятии" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Георг Вильгельм Фридрих Гегель - Учение о понятии"
Отзывы читателей о книге "Учение о понятии", комментарии и мнения людей о произведении.