Яков Гегузин - Капля
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Капля"
Описание и краткое содержание "Капля" читать бесплатно онлайн.
При прочих неизменных условиях судьба летящей капли существенно зависит от ее массы. Поэтому, оставив без внимания капли промежуточных размеров, проследим за тем, что происходит с каплями маленькими и большими.
Однако вначале необходимо договориться, какие капли мы будем считать «маленькими», а какие «большими». В очерке об опыте Плато мы обсуждали вопрос о «маленькой» капле, лежащей на твердой подложке, и выяснили, что в этих условиях «маленькой» следует считать такую каплю, у которой лапласовское давление успешно борется с давлением, обусловленным ее тяжестью, и поэтому капля остается почти сферической. Видимо, подобный критерий надо применить и к дождевой капле, но только при этом с лапласовским давлением (Рл), стремящимся сохранить сферическую форму капли, надо сравнивать деформирующее давление (Рυ), обусловленное сопротивлением, которое оказывает летящей капле воздух. Если Рл>>Рυ, капля сохранит форму шарика и мы будем ее считать «маленькой», а если Рл< < Рυ, капля будет сильно деформироваться давлением Рυ и ее мы будем считать
«большой». Рл нам известно, оно равняется 2α/R, а вот вычислить Рυ — задача непростая. Для нас, однако, важно лишь знать, что Рυ растет с R и поэтому должны существовать такие размеры, при которых выполняются два предельных неравенства между Рл и Рυ, явившиеся для нас основанием делить капли на «маленькие» и «большие».
Расчет приводит к тому, что к числу «маленьких» надо относить капли, размер которых порядка десятков микрон, а к числу «больших» те, радиус которых порядка миллиметров.
Теперь о полете маленькой капли, которая, падая, сохраняет форму шарика. Если с ее формой ничего не происходит и шарик остается шариком, то о движении капли лучше говорить так: воздух, двигаясь снизу вверх, вязко обтекает водяной шарик. Попробуем вычислить скорость, с которой при этом водяной шарик — капля — приближается к земле.
Начнем с примера, который имеет прямое отношение к нашей задаче о вязком обтекании воздухом капли. Допустим, к нити из вязкого вещества — смолы или разогретого стекла — прикреплен грузик, под действием которого нить будет удлиняться, вязко течь. Очевидно, ее удлинение (Δl) будет тем большим, чем длиннее нить (l), больше время течения (t), больше нагрузка, приложенная к нити (Р), и меньше вязкость (η) вещества, из которого она изготовлена. Сказанное можно записать в виде формулы
Δl =lPt/η,
из которой следует, что скорость удлинения υ = Δl /t= lP/η
Возвратимся теперь к вопросу о вязком обтекании воздухом капли-шарика. Этот процесс должен подчиняться тому же закону, что и вязкое течение нити. Различие заключается лишь в том, что в одном случае течет смола или стекло, а в другом — воздух. Важно, что в обоих случаях имеет место вязкое течение. Обратим, однако, внимание на то, что в интересующей нас задаче характерный размер — не длина нити, а радиус шарика R и что напряжение Р пропорционально отношению силы F, тянущей шарик, к площади его сечения, т. е Р≈F/πR2 .Применительно к шарику формулу, определяющую скорость, можно переписать в виде: υ ≈ F/Rη . Мы воспользовались знаком «пропорционально» потому, что не учли конкретной геометрии потока воздуха вокруг шарика. Точный расчет приводит к формуле, которая от нашей отличается лишь множителем 1/6 .π, и таким образом:
υ= F/ 6πRη
Обсудим величину F.
Если бы шарик падал в вакууме, то
F = F↓= mg =4/3πR3ρg.
Так как шарик находится в воздухе, то на него действует и архимедова сила F↑, которая направлена противоположно F↓ и определяется той же формулой, что и F↓, только величину ρ — плотность вещества шарика нужно заменить величиной ρo — плотностью воздуха. Вот теперь можно записать интересующую нас формулу в окончательном виде:
υ = 1(F↓ - F↑)/6πRη = 2/9. gR2. (ρ - ρo)/ η
Эту формулу называют формулой Стокса. Нам она позже понадобится.
Вычислим скорость падения маленькой дождевой капли. Допустим, что ее размер R ≈ 10-1 см. Так как g ≈ 103 см/сек2, η ≈ 2.10-2 г/см.сек (пуаз), ρ = 1 г/см3, ρo = 1,2.10-3 г/см3, то υ ≈ 102 см/сек.
Итак, мы выяснили, что маленькие капли летят со скоростью, пропорциональной квадрату их радиуса, и что величина этой скорости порядка 100 см за секунду. Если маленькая капля зародилась в облаке, которое плавает над землей на высоте около километра, и если ничто не помешает ей себя сохранить в полете, до земли ей лететь долго — около 15 мин. Еще раз подчеркнем — рассказанное о маленькой дождевой капле справедливо при соблюдении очень важной оговорки: если капля сохранит себя в целости на протяжении всего времени полета от облака до земли. И еще одна оговорка: все рассказанное о скорости полета капли относится к установившемуся, или, как говорят физики, стационарному, режиму. В самом начале полета капля двигалась ускоренно, пока не достигла стационарной скорости.
Так во время полета изменяется форма крупной капли, падающей в воздухе
Теперь о больших каплях. Речь идет о каплях крупных, размер которых достигает нескольких миллиметров. Такие капли иногда образуются в искусственных условиях, например при распаде струй, а иногда и в условиях естественного дождя. С ними происходит вот что.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Капля"
Книги похожие на "Капля" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Яков Гегузин - Капля"
Отзывы читателей о книге "Капля", комментарии и мнения людей о произведении.