» » » » Рене Декарт - Сочинения в двух томах. Том 1


Авторские права

Рене Декарт - Сочинения в двух томах. Том 1

Здесь можно скачать бесплатно "Рене Декарт - Сочинения в двух томах. Том 1" в формате fb2, epub, txt, doc, pdf. Жанр: Философия, издательство Мысль. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рене Декарт - Сочинения в двух томах. Том 1
Рейтинг:
Название:
Сочинения в двух томах. Том 1
Автор:
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
5-244-00022-5, 5-244-00023-3
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Сочинения в двух томах. Том 1"

Описание и краткое содержание "Сочинения в двух томах. Том 1" читать бесплатно онлайн.



В настоящий том входят произведения французского философа XVII в., представляющие достаточно полную картину его воззрений на мир, познание, человека: «Правила для руководства ума» (в новом переводе), «Мир, или Трактат о свете», «Рассуждение о методе», «Первоначала философии» и др. Включенная в том избранная переписка (впервые публикуемая на русском языке) способствует лучшему уяснению взглядов мыслителя. Впервые на русском языке публикуется работа «Замечания на некую программу, изданную в Бельгии в конце 1647 года…».

http://fb2.traumlibrary.net






Олимпика

(I)

«Другой трактат в форме рассуждения, озаглавленный «Олимпика», содержавший всего лишь 12 страниц и имевший на полях сделанную позже чернилами рукой автора ремарку, еще сегодня дающую работу любознательным:

[…] «XI ноября 1620 г. я начал понимать основание чудесного открытия», разъяснить которое не могут ни г-н Клерселье, ни другие картезианцы. Эта ремарка находится напротив текста […], содержащего следующие латинские слова: «X ноября 1619 г., преисполненный энтузиазма, я нашел основания чудесной науки» и т. д.».

(II)

«В новом порыве решимости он [г-н Декарт] предпринял осуществление первой части своих намерений, состоявшей в одном лишь разрушении. Безусловно, эта часть была наиболее легкой из двух. Но очень скоро он обнаружил, что человеку не легче избавиться от своих предрассудков, нежели, к примеру, сжечь свой дом. Он начал готовиться к своему отречению с самого момента окончания коллегии: для этого он проделал несколько опытов, первый — во время своего уединения в пригороде Парижа Сен-Жермен, а затем в течение своего пребывания в Бреде […]»

Изучение здравого смысла

(I)

«Другая латинская работа, в написании которой г-н Декарт продвинулся достаточно далеко и из которой он оставил нам довольно большой фрагмент, — это «Изучение здравого смысла», или «Искусство правильного мышления», которую он назвал «Studium bonae mentis». Это рассуждение о наличествующей в нас потребности познания; о науках; о расположенности разума к обучению; о порядке, которому необходимо следовать для обретения мудрости, т. е. истинного знания, связывая функции воли с функциями разума. Его намерением было проложить совершенно новый путь; но он предполагает работать лишь для себя и для своего друга, величаемого им Ученый (Museus), которому он послал свой трактат и которым одни считают г-на Ис[аака] Бекмана, бывшего в то время ректором Дордрехтской коллегии, другие — г-на Мидоржа или о[тца] Мерсенна»11.

(II)

«В отношении физики и метафизики, которым его обучали в предыдущие годы (в Ла-Флеши, 1611–1612 гг.), г-н Декарт испытывал еще большую неудовлетворенность, чем в отношении логики и морали.

Разочаровавшись […], он полностью отказался от учебников начиная с 1613 г. и целиком отдался изучению художественной литературы».

(V)

«Он делит науки на три класса: науки первого класса, именуемые им кардинальными, являются наиболее общими, дедуцируемыми из простейших и наиболее широко распространенных принципов. Науки второго класса, именуемые им экспериментальными, — это те науки, принципы которых не являются ясными и точными для всех, но лишь для тех, кто познал их из своего личного опыта и наблюдений, хотя другим они могли бы быть известными поверхностным, наглядным образом. Третьи, либеральные, таковы, что требуют остроты ума или по крайней мере навыка, приобретенного упражнением; к ним относятся политика, практическая медицина, музыка, риторика, поэтика и многие другие, которые могут быть объединены под названием свободных искусств, но которые свою внутреннюю несомненную истинность черпают из принципов других наук».

(V bis)

«После того как мы отметили мысли г-на Декарта о науках и способе их изучения, будет любопытно узнать, как он их применяет к различению наук, которые считает исходящими от разума, и наук, относимых им к воображению и чувствам. […] Познание воображения г-н Декарт именует размышлением, а познание разума — созерцанием. Это он относит ко всем наукам, но прежде всего к тем, которые он именует кардинальными или основополагающими, каковы истинная философия, зависящая от разума, и истинная математика, зависящая от воображения».

Из переписки 1619–1643 гг.*

К И. БЕКМАНУ1

Бреда, 24 января 1619 г.

[…] Я, по своему обыкновению, постоянно бездельничаю; я едва сформулировал названия трактатов, которые Вы посоветовали мне написать. Не подумайте, однако, что, бездельничая, я теряю напрасно все свое время. Больше того, никогда еще я не проводил его с такой пользой, как сейчас, но главным образом в отношении вещей, которые Ваш разум с точки зрения своих более возвышенных занятий будет, без сомнения, презирать, глядя на них из величественных сфер науки: это — рисование, военная архитектура и особенно фламандский язык. О моем прогрессе в этом языке Вы скоро сможете судить сами, так как я прибуду в Мидделбург, если на то будет воля господня, к началу Поста.

Что касается Вашего вопроса, то Вы решили его сами как нельзя лучше. Но с моей точки зрения, есть одна вещь, к которой Вы не проявили достаточно внимания, написав, что в голосовом пении все скачки производятся точными созвучиями. Я припоминаю, что отметил это еще ранее — тогда, когда писал о диссонансах. Если Вы пристальнее приглядитесь к этому, а также просмотрите весь остальной мой «Краткий курс музыки»2, то найдете математические доказательства для всех замечаний, сделанных мною об интервалах созвучий, уровнях и диссонансах, но все это плохо переварено, смутно и объяснено очень кратко.


К И. БЕКМАНУ3

Бреда, 26 марта 1619 г.

Позвольте попрощаться с Вами в письме, так как я не смог это сделать лично перед своим отъездом. Вот уже шесть дней, как я, возвратившись сюда, с небывалым усердием вновь взялся за науки. За столь краткое время я нашел с помощью моих циркулей четыре замечательных и по существу новых доказательства.

Первое — для знаменитой проблемы деления угла на произвольное число частей. Три других относятся к трем родам кубических уравнений: первое — между абсолютным числом, корнями и кубами; второе — между абсолютным числом, корнями, квадратами и кубами. Я нашел для них три доказательства, каждое из которых распространяется на члены, варьирующиеся в зависимости от комбинации знаков «+» и «—». Я еще не закончил их исследование, но, по моему мнению, найденное мною для одних уравнений легко можно будет приложить к остальным. Посредством этого можно будет решить в четыре раза больше задач, чем с помощью обыкновенной алгебры, и притом намного легче […]. Теперь я занят другим — извлечением корней из суммы несоизмеримых между собой величин. Если я найду решение, то приведу в порядок все вышеизложенное при условии, что смогу преодолеть свою врожденную апатию и что судьба ниспошлет мне свободную жизнь. И разумеется, не буду скрывать от Вас предмета своей работы: это не «Краткое искусство» Луллия4 — я пытаюсь изложить совершенно новую науку, которая позволила бы общим образом разрешить все проблемы независимо от рода величины, непрерывной или прерывной, исходя каждый раз лишь из природы самой величины. В арифметике некоторые проблемы могут быть разрешены посредством рациональных чисел, другие — только посредством иррациональных, в ней, наконец, есть такие, которые можно хорошо себе представить, но без их решения. Для такого рода проблем я надеюсь доказать (в случае непрерывной величины), что некоторые из них могут быть решены посредством одних лишь прямых линий или окружностей, другие — только посредством кривых, отличных от окружностей, но также проводимых единым (непрерывным) движением, что возможно с помощью новых циркулей, которые я считаю не менее правильными и столь же геометрическими, как и обыкновенный циркуль, посредством которого проводят окружности; третьи проблемы в конечном счете разрешаются только посредством кривых линий, порожденных несколькими несоподчиненными движениями, и ими, без сомнения, являются воображаемые линии: такова, например, линия квадратриса, которая достаточно известна. И я полагаю, что невозможно представить себе ничего, что не имело бы решения по крайней мере посредством подобных линий. Но я надеюсь показать, какие именно виды проблем могут быть разрешены тем или иным способом и не иначе, так что в геометрии почти нечего будет открывать. Это не может быть трудом одиночки, и его никогда не закончат. Какой честолюбивый проект! Это маловероятно! Но в смутном хаосе этой своей науки я усмотрел свет, сам не знаю еще какой, благодаря которому самые густые потемки смогут рассеяться.


К И. БЕКМАНУ5

Амстердам, 23 апреля 1619 г.

Если, как я надеюсь, [во время путешествия] я остановлюсь, обещаю Вам тотчас приняться за обдумывание моей «Механики», или (vel) «Геометрии», и воспользуюсь случаем, чтобы приветствовать в Вашем лице вдохновителя и первого автора моих работ.

В самом деле, если говорить правду, Вы единственный извлекли меня из состояния праздности и заставили вспомнить вновь то, что я учил и что к этому времени почти полностью исчезло из моей памяти; мой ум блуждал далеко от серьезных занятий, и Вы наставили его на путь истинный. И я не премину послать Вам те немногие и, быть может, не в полной мере достойные презрения плоды моего труда, которые Вы можете целиком объявить своими, — как для того, чтобы они послужили для Вашей пользы, так и для того, чтобы Вы внесли в них исправления: например, то, что я недавно писал Вам о навигации […].


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Сочинения в двух томах. Том 1"

Книги похожие на "Сочинения в двух томах. Том 1" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Рене Декарт

Рене Декарт - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Рене Декарт - Сочинения в двух томах. Том 1"

Отзывы читателей о книге "Сочинения в двух томах. Том 1", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.