Внутренний СССР - Психологический аспект истории и перспектив нынешней глобальной цивилизации
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Психологический аспект истории и перспектив нынешней глобальной цивилизации"
Описание и краткое содержание "Психологический аспект истории и перспектив нынешней глобальной цивилизации" читать бесплатно онлайн.
Введение 1. Кризис надгосударственного управления 2. Неадекватность библейской надгосударственной власти 3. Объемлющая альтернатива 3.1 Историческая доминанта Русской цивилизации 3.2 О чём говорит русский языковой код 3.3 Восточно-Европейская равнина: “тайная” очевидность 3.4 Компактно-общинный характер проживания и единство культуры разных общин 3.5 Межобщинные отношения и Русский дух Русь великая, изначальная 3.6 Преображение Руси через многовековой кризис Послесловие
2. Структура задачи не должна изменяться при изменении расчетного количества шагов N.
3. Размерность пространства параметров, которыми описывается состояние системы, не должна изменяться в зависимости от количества шагов N.
4. Выбор управления на любом из шагов не должен отрицать выбора управления на предъидущих шагах. Иными словами, оптимальный выбор управления в любом из возможных состояний должен определяться параметрами разсматриваемого состояния, а не параметрами процесса, в ходе которого система пришла в разсматриваемое состояние.
Чисто формально, если одному состоянию соответствуют разные предъистории его возникновения, влияющие на последующий выбор оптимального управления, то метод позволяет включить описания предъисторий в вектор состояния, что ведёт к увеличению размерности вектора состояния системы. После этой операции то, что до неё описывалось как одно состояние, становится множеством состояний, отличающихся одно от других компонентами вектора состояния, описывающими предъисторию процесса.
5. Критерий оптимального выбора последовательности шаговых управлений Un и соответствующей траектории в пространстве формальных параметров имеет вид:
V = V0(X0, U0) + V1(X1, U1) + …+ VN - 1(XN- 1, UN - 1) + VN(XN).
Критерий V принято называть полным выигрышем, а входящие в него слагаемые - шаговыми выигрышами. В задаче требуется найти последовательность шаговых управленийUn и траекторию, которым соответствует максимальный из возможных полных выигрышей. По своему существу полный “выигрыш” V - мера качества управления процессом в целом. Шаговые выигрыши, хотя и входят в меру качества управления процессом в целом, но в общем случае не являются мерами качества управления на соответствующих им шагах, поскольку метод предназначен для оптимизации управления процессом в целом, а эффектные шаговые управления с большим шаговым выигрышем, но лежащие вне оптимальной траектории, интереса не представляют. Структура метода не запрещает при необходимости на каждом шаге употреблять критерий определения шагового выигрыша Vn, отличный от критериев, принятых на других шагах.
С индексом n - указателем-определителем множеств возможных векторов состояния - в реальных задачах может быть связан некий изменяющийся параметр, например: время, пройденный путь, уровень мощности, мера расходования некоего ресурса и т.п. То есть метод применим не только для оптимизации управления процессами, длящимися во времени, но и к задачам оптимизации многовариантного одномоментного или нечувствительного ко времени решения, если такого рода “безвременные”, “непроцессные” задачи допускают их многошаговую интерпретацию.
Теперь обратимся к рис. 4 - рис. 6, повторяющим взаимно связанные рис. 40, 41, 42 из курса теории автоматического управления П. де Ла Барьера.
???? Рис. 4. К существу метода динамического программирования.
Матрица возможностей.
На рис. 4 показаны начальное состояние системы - «0» и множества её возможных последующих состояний - «1», «2», «3», а также возможные переходы из каждого возможного состояния в другие возможные состояния. Всё это вместе похоже на карту настольной детской игры, по которой перемещаются фишки: каждому переходу-шагу соответствует свой шаговый выигрыш, а в завершающем процесс третьем множестве - каждому из состояний системы придана его оценка, помещенная в прямоугольнике. Принципиальное отличие от игры в том, что гадание о выборе пути, употребляемое в детской игре, на основе бросания костей или вращения волчка и т.п., в реальном управлении недопустимо, поскольку это - передача целесообразного управления тем силам, которые способны управлять выпадением костей, вращением волчка и т.п., т.е. тем, для кого избранный в игре «генератор случайностей» - достаточно (по отношению к их целям) управляемое устройство.
Если выбирать оптимальное управление на первом шаге, то необходимо предвидеть все его последствия на последующих шагах. Поэтому описание алгоритма метода динамического программирования часто начинают с описания выбора управления на последнем шаге, ведущем в одно из завершающих процесс состояний. При этом ссылаются на «педагогическую практику», которая свидетельствует, что аргументация при описании алгоритма от завершающего состояния к начальному состоянию легче возпринимается, поскольку опирается на как бы уже сложившиеся к началу разсматриваемого шага условия, в то время как возможные завершения процесса также определены.
???? Рис. 5. К существу метода динамического
программирования. Анализ переходов.
В соответствии с этим на рис. 5 анализируются возможные переходы в завершающее множество состояний «3» из каждого возможного состояния в ему предшествующем множестве состояний «2», будто бы весь предшествующий путь уже пройден и осталось последним выбором оптимального шагового управления завершить весь процесс. При этом для каждого из состояний во множестве «2» определяются всеполные выигрыши как сумма = «оценка перехода» + «оценка завершающего состояния». Во множестве «2» из полученных для каждого из состояний, в нём возможных полных выигрышей, определяется и запоминается максимальный полный выигрыш и соответствующий ему переход (фрагмент траектории). Максимальный полный выигрыш для каждого из состояний во множестве «2» взят в прямоугольную рамку, а соответствующий ему переход отмечен стрелкой. Таких оптимальных переходов из одного состояния в другие, которым соответствует одно и то же значение полного выигрыша, в принципе может оказаться и несколько. В этом случае все они в методе неразличимы и эквивалентны один другому в смысле построенного критерия оптимальности выбора траектории в пространстве параметров, которыми описывается система.
После этого множество «2», предшествовавшее завершающему процесс множеству «3», можно разсматривать в качестве завершающего, поскольку известны оценки каждого из его возможных состояний (максимальные полные выигрыши) и дальнейшая оптимизация последовательности шаговых управлений и выбор оптимальной траектории могут быть проведены только на ещё не разсмотренных множествах, предшествующих множеству «2» в оптимизируемом процессе (т.е. на множествах «0» и «1»).
Таким образом, процедура, иллюстрируемая рис. 5, работоспособна на каждом алгоритмическом шаге метода при переходах из n-го в (n - 1)-е множество, начиная с завершающего N-ного множества до начального состояния системы.
В результате последовательного попарного перебора множеств, при прохождении всего их набора, определяется оптимальная последовательность преемственных шаговых управлений, максимально возможный полный выигрыш и соответствующая им траектория. На рис. 6 утолщённой линией показана оптимальная траектория для разсматривавшегося примера.
???? Рис. 6. К существу метода динамического программирования.
Оптимальная траектория.
В разсмотренном примере критерий оптимальности - сумма шаговых выигрышей. Но критерий оптимальности может быть построен и как произведение обязательно неотрицательных сомножителей.
Поскольку результат (сумма или произведение) не изменяется при изменении порядка операций со слагаемыми или сомножителями, то алгоритм работоспособен и при переборе множеств возможных состояний в порядке, обратном разсмотренному: т.е. от изходного к завершающему множеству возможных состояний.
Если множества возможных состояний упорядочены в хронологической последовательности, то это означает, что расчетная схема может быть построена как из реального настоящего в прогнозируемое определённое будущее, так и из прогнозируемого определённого будущего в реальное настоящее. Это обстоятельство говорит о двух неформальных соотношениях реальной жизни, лежащих вне алгоритма:
1. Метод динамического программирования формально алгоритмически нечувствителен к характеру причинно-следственных обусловленностей (в частности, он не различает причин и следствий). По этой причине каждая конкретная интерпретация метода в прикладных задачах должна строиться с неформальным учетом реальных обусловленностей следствий причинами.
2. Если прогностика в согласии с иерархически высшим объемлющим управлением, а частное вложенное в объемлющее управление осуществляется квалифицировано, в силу чего процесс частного управления протекает в ладу с иерархически высшим объемлющим управлением, то НЕ СУЩЕСТВУЕТ УПРАВЛЕНЧЕСКИ ЗНАЧИМОЙ РАЗНИЦЫ МЕЖДУ РЕАЛЬНЫМ НАСТОЯЩИМ И ИЗБРАННЫМ БУДУЩИМ.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Психологический аспект истории и перспектив нынешней глобальной цивилизации"
Книги похожие на "Психологический аспект истории и перспектив нынешней глобальной цивилизации" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Внутренний СССР - Психологический аспект истории и перспектив нынешней глобальной цивилизации"
Отзывы читателей о книге "Психологический аспект истории и перспектив нынешней глобальной цивилизации", комментарии и мнения людей о произведении.