» » » » Герберт Шилдт - C# 4.0 полное руководство - 2011


Авторские права

Герберт Шилдт - C# 4.0 полное руководство - 2011

Здесь можно скачать бесплатно "Герберт Шилдт - C# 4.0 полное руководство - 2011" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая старинная литература. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Герберт Шилдт - C# 4.0 полное руководство - 2011
Рейтинг:
Название:
C# 4.0 полное руководство - 2011
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "C# 4.0 полное руководство - 2011"

Описание и краткое содержание "C# 4.0 полное руководство - 2011" читать бесплатно онлайн.








for(int count = 0; count < 5; count++) {

Thread.Sleep(500);

Console.WriteLine("В методе MyMeth2, подсчет равен " + count );

}

Console.WriteLine("MyMeth2 завершен");

}

static void Main() {

Console.WriteLine("Основной поток запущен.");

// Выполнить параллельно два именованных метода.

Parallel.Invoke(MyMeth, MyMeth2);

Console.WriteLine("Основной поток завершен.");

}

}

Выполнение этой программы может привести к следующему результату.

Основной поток запущен.

MyMeth() запущен MyMeth2() запущен В методе MyMeth() подсчет равен 0 В методе MyMeth2() подсчет равен 0 В методе MyMeth() подсчет равен 1 В методе MyMeth2() подсчет равен 1 В методе MyMeth() подсчет равен 2 В методе MyMeth2() подсчет равен 2 В методе MyMeth() подсчет равен 3

В методе MyMeth2() подсчет равен 3 В методе MyMethO подсчет равен 4 MyMeth() завершен

В методе MyMeth2() подсчет равен 4 MyMeth2() завершен Основной поток завершен.

В данном примере особое внимание обращает на себя следующее обстоятельство: выполнение метода Main () приостанавливается до тех пор, пока не произойдет возврат из метода Invoke (). Следовательно, метод Main (), в отличие от методов MyMeth () и MyMeth2 (), не выполняется параллельно. Поэтому применять метод Invoke () показанным здесь способом нельзя в том случае, если требуется, чтобы исполнение вызывающего потока продолжалось.

В приведенном выше примере использовались именованные методы, но для вызова метода Invoke () это условие не является обязательным. Ниже приведен переделанный вариант той же самой программы, где в качестве аргументов в вызове метода Invoke () применяются лямбда-выражения.

// Применить метод Parallel.Invoke() для параллельного выполнения двух методов. // В этой версии программы применяются лямбда-выражения.

using System;

using System.Threading;

using System.Threading.Tasks;

class DemoParallel {

static void Main() {

Console.WriteLine("Основной поток запущен.");

// Выполнить два анонимных метода, указываемых в лямбда-выражениях.

Parallel.Invoke( () => {

Console.WriteLine("Выражение #1 запущено");

for(int count = 0; count < 5; count++) {

Thread.Sleep(500);

Console.WriteLine("В выражении #1 подсчет равен " + count );

}

Console.WriteLine("Выражение #1 завершено");

},

О => {

Console.WriteLine("Выражение #2 запущено");

for (int count = 0; count < 5; count++) {

Thread.Sleep(500);

Console.WriteLine("В выражении #2 подсчет равен " + count );

}

Console.WriteLine("Основной поток завершен.");

}

}

Эта программа дает результат, похожий на результат выполнения предыдущей программы.

Применение метода For ()

В TPL параллелизм данных поддерживается, в частности, с помощью метода For (), определенного в классе Parallel. Этот метод существует в нескольких формах. Его рассмотрение мы начнем с самой простой формы, приведенной ниже:

public static ParallelLoopResult

For(int fromlnclusive, int toExclusive, Action<int> body)

где fromlnclusive обозначает начальное значение того, что соответствует переменной управления циклом; оно называется также итерационным, или индексным, значением; a toExclusive — значение, на единицу больше конечного. На каждом шаге цикла переменная управления циклом увеличивается на единицу. Следовательно, цикл постепенно продвигается от начального значения fromlnclusive к конечному значению toExclusive минус единица. Циклически выполняемый код указывается методом, передаваемым через параметр body. Этот метод должен быть совместим с делегатом Action<int>, объявляемым следующим образом.

public delegate void Action<in T>(T obj)

Для метода For () обобщенный параметр Т должен быть, конечно, типа int. Значение, передаваемое через параметр obj, будет следующим значением переменной управления циклом. А метод, передаваемый через параметр body, может быть именованным или анонимным. Метод For () возвращает экземпляр объекта типа ParallelLoopResult, описывающий состояние завершения цикла. Для простых циклов этим значением можно пренебречь. (Более подробно это значение будет рассмотрено несколько ниже.)

Главная особенность метода For () состоит в том, что он позволяет, когда такая возможность имеется, распараллелить исполнение кода в цикле. А это, в свою очередь, может привести к повышению производительности. Например, процесс преобразования массива в цикле может быть разделен на части таким образом, чтобы разные части массива преобразовывались одновременно. Следует, однако, иметь в виду, что повышение производительности не гарантируется из-за отличий в количестве доступных процессоров в разных средах выполнения, а также из-за того, что распараллеливание мелких циклов может составить издержки, которые превышают сэкономленное время.

В приведенном ниже примере программы демонстрируется применение метода For () на практике. В начале этой программы создается массив data, состоящий из 1000000000 целых значений. Затем вызывается метод For (), которому в качестве "тела" цикла передается метод MyTransf оггп (). Этот метод состоит из ряда операторов, выполняющих произвольные преобразования в массиве data. Его назначение — сымитировать конкретную операцию. Как будет подробнее пояснено несколько ниже, выполняемая операция должна быть нетривиальной, чтобы параллелизм данных принес какой-то положительный эффект. В противном случае последовательное выполнение цикла может завершиться быстрее.

11 Применить метод Parallel.For() для организации параллельно // выполняемого цикла обработки данных.

using System;

using System.Threading.Tasks;

class DemoParallelFor { static int[] data;

// Метод, служащий в качестве тела параллельно выполняемого цикла.

// Операторы этого цикла просто расходуют время ЦП для целей демонстрации, static void MyTrlansform (int i) { data[i] = data[i] / 10;

if(data[i] < 10000) data[i] = 0;

if(data[i] > 10000 & data[i] < 20000) data[i] = 100; if(data[i] > 20000 & data[i] < 30000) data[i] = 200; if(data[i] > 30000) data[i] = 300;

}

static void Main() {

Console.WriteLine("Основной поток запущен.");

data = new int[100000000];

// Инициализировать данные в обычном цикле for. for (int i=0; i < data.Length; i++) data[i] = i;

// Распараллелить цикл методом For().

Parallel.For(0, data.Length, MyTransform);

Console.WriteLine("Основной поток завершен.");

}

}

Эта программа состоит из двух циклов. В первом, стандартном, цикле for инициализируется массив data. А во втором цикле, выполняемом параллельно методом For (), над каждым элементом массива data производится преобразование. Как упоминалось выше, это преобразование носит произвольный характер и выбрано лишь для целей демонстрации. Метод For () автоматически разбивает вызовы метода MyTransform () на части для параллельной обработки отдельных порций данных, хранящихся в массиве. Следовательно, если запустить данную программу на компьютере с двумя доступными процессорами или больше, то цикл преобразования данных в массиве может быть выполнен методом For () параллельно.

Следует, однако, иметь в виду, что далеко не все циклы могут выполняться эффективно, когда они распараллеливаются. Как правило, мелкие циклы, а также циклы, состоящие из очень простых операций, выполняются быстрее последовательным способом, чем параллельным. Именно поэтому цикл for инициализации массива данных не распараллеливается методом For () в рассматриваемой здесь программе. Распараллеливание мелких и очень простых циклов может оказаться неэффективным потому, что время, требующееся для организации параллельных задач, а также время, расходуемое на переключение контекста, превышает время, экономящееся благодаря параллелизму. В подтверждение этого факта в приведеннрм ниже примере программы

создаются последовательный и параллельный варианты цикла for, а для сравнения на экран выводится время выполнения каждого из них.

// Продемонстрировать отличия во времени последовательного //и параллельного выполнения цикла for.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "C# 4.0 полное руководство - 2011"

Книги похожие на "C# 4.0 полное руководство - 2011" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Герберт Шилдт

Герберт Шилдт - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Герберт Шилдт - C# 4.0 полное руководство - 2011"

Отзывы читателей о книге "C# 4.0 полное руководство - 2011", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.