» » » Иван Братко - Программирование на языке Пролог для искусственного интеллекта


Авторские права

Иван Братко - Программирование на языке Пролог для искусственного интеллекта

Здесь можно скачать бесплатно "Иван Братко - Программирование на языке Пролог для искусственного интеллекта" в формате fb2, epub, txt, doc, pdf. Жанр: Программирование, издательство Мир, год 1990. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Иван Братко - Программирование на языке Пролог для искусственного интеллекта
Рейтинг:
Название:
Программирование на языке Пролог для искусственного интеллекта
Автор:
Издательство:
Мир
Год:
1990
ISBN:
5-03-001425-Х
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Программирование на языке Пролог для искусственного интеллекта"

Описание и краткое содержание "Программирование на языке Пролог для искусственного интеллекта" читать бесплатно онлайн.



Книга известного специалиста по программированию (Югославия), содержащая основы языка Пролог и его приложения для решения задач искусственного интеллекта. Изложение отличается методическими достоинствами — книга написана в хорошем стиле, живым языком. Книга дополняет имеющуюся на русском языке литературу по языку Пролог.

Для программистов разной квалификации, специалистов по искусственному интеллекту, для всех изучающих программирование.






Рис. 10.6. Вставление элемента в 2-3 справочник. В этой программе предусмотрено, что попытка повторного вставления элемента терпит неудачу.


Программа для вставления нового элемента в 2-3 справочник показана полностью на рис. 10.6. На рис. 10.7 показана программа вывода на печать 2-3 деревьев.

Наша программа иногда выполняет лишние возвраты. Так, если встав с тремя аргументами терпит неудачу, то вызывается процедура встав с пятью аргументами, которая часть работы делает повторно. Можно устранить источник неэффективности, если, например, переопределить встав как

встав2( Дер, X, Деревья)

где Деревья — список, состоящий либо из одного, либо из трех аргументов:

 Деревья = [ НовДер], если встав( Дер, X, НовДер)

Деревья = [ НДа, Мб, НДб], 

 если встав( Дер, X, НДа, Мб, НДб)

Теперь отношение доб23 можно переопределить так:

доб23( Д, X, Д1) :-

 встав( Д, X, Деревья),

 соединить( Деревья, Д1).

Отношение соединить формирует одно дерево Д1 из деревьев, находящихся в списке Деревья.


% Отображение 2-3 справочников

отобр(Д) :-

 отобр( Д, 0).

отобр( nil, _ ).

отобр( л(А), H) :-

 tab( H), write( A), nl.

отобр( в2( Д1, М, Д2), H) :-

 H1 is H + 5,

 отобр( Д2, H1),

 tab( H), write( --), nl,

 tab( H), write( M), nl,

 tab( H), write( --), nl,

 отобр( Д1, H1).

отобр( в3( Д1, M2, Д2, М3, Д3), H) :-

 H1 is H + 5

 отобр( Д3, H1),

 tab( H), write( --), nl,

 tab( H), write( M3), nl,

 отобр( Д2, H1),

 tab( H), write( M2), nl,

 tab( H), write( --), nl,

 отобр( Д1, H1).

(a)

      15

    --

    15

    --

      13

  --

  13

  --

      12

    --

    12

      10

    10

    --

       8

--

 8

--

       7

    --

     7

    --

  --

   5

  --

       4

    --

     4

       3

     3

    --

       1

10.2. AVL-дерево: приближенно сбалансированное дерево

AVL-дерево — это дерево, обладающее следующими свойствами:

(1) Левое и правое поддеревья отличаются по глубине не более чем на 1.

(2) Оба поддерева являются AVL-деревьями.

Деревья, удовлетворяющие этому определению, могут быть слегка разбалансированными. Однако можно показать, что даже в худшем случае глубина AVL-дерева примерно пропорциональна log n, где n — число вершин дерева. Таким образом гарантируется логарифмический порядок производительности операций внутри, добавить и удалить.

Операции над AVL-деревом работают по существу так же, как и над двоичным справочником. В них только сделаны добавления, связанные с поддержанием приближенной сбалансированности дерева. Если после вставления или удаления дерево перестает быть приближенно сбалансированным, то специальные механизмы возвращают ему требуемую степень сбалансированности. Для того, чтобы эффективно реализовать этот механизм, нам придется сохранять некоторую дополнительную информацию относительно степени сбалансированности дерева. На самом деле, нам нужно знать только разность между глубинами поддеревьев, которая может принимать значения -1, 0 или +1. Тем не менее для простоты мы предпочтем сохранять сами величины глубин поддеревьев, а не разности между ними.

Мы определим отношение вставления элемента как

доб_avl( Дер, X, НовДер)

где оба дерева Дер и НовДер — это AVL-деревья, причем НовДер получено из Дер вставлением элемента X. AVL-деревья будем представлять как термы вида

д( Лев, А, Прав)/Глуб

где А — корень, Лев и Прав — поддеревья, а Глуб — глубина дерева. Пустое дерево изображается как nil/0. Теперь рассмотрим вставление элемента X в непустой AVL-справочник

Дер = д( L, A, R)/H

Рис. 10.8. Задача вставления элемента в AVL-справочник (a) AVL-дерево перед вставлением X, X > А; (b) AVL-дерево после вставления X в R; (с) составные части, из которых следует построить новое дерево.

Начнем со случая, когда X больше А. X необходимо вставить в R, поэтому имеем следующее отношение:

доб_аv1( R, X, д( R1, В, R2)/Hb)

На рис. 10.8 показаны составные части, из которых строится дерево НовДер:

L, А, R1, В, R2

Какова глубина деревьев L, R, R1 и R2?  L и R могут отличаться по глубине не более, чем на 1. На рис. 10.8 видно, какую глубину могут иметь R1 и R2. Поскольку в R был добавлен только один элемент X, только одно из поддеревьев R1, R2 может иметь глубину h+1.

Рис. 10.9. Три правила построения нового AVL-дepевa.

В случае, когда X меньше, чем А, имеем аналогичную ситуацию, причем левое и правое поддеревья меняются местами. Таким образом, в любом случае мы должны построить дерево НовДер, используя три дерева (назовем их Дер1, Дер2 и Дер3) и два отдельных элемента А и В. Теперь рассмотрим вопрос: как соединить между собой эти пять составных частей, чтобы дерево НовДер было AVL-справочником? Ясно, что они должны располагаться внутри НовДер в следующем порядке (слева направо):

Дер1, А, Дер2, В, Дер3

Рассмотрим три случая:

(1) Среднее дерево Дер2 глубже остальных двух деревьев.

(2) Дер1 имеет глубину не меньше, чем Дер2 и Дер3.

(3) Дер3 имеет глубину не меньше, чем Дер2 и Дер1.

На рис. 10.9 видно, как можно построить дерево НовДер в каждом из этих трех случаев. Например, в случае 1 среднее дерево Дер2 следует разбить на два части, а затем включить их в состав НовДер. Три правила, показанные на pис.10.9, нетрудно запасать на Прологе в виде отношения

соединить( Дер, А, Дер2, В, Дер3, НовДер)

Последний аргумент НовДер — это AVL-дерево, построенное из пяти составных частей, пяти первых аргументов. Правило 1, например, принимает вид:

соединить( Д1/Н1, А, д( Д21, В, Д22)/Н2, С, Д3/Н3,

  % Пять частей

 д( д( Д1/Н1, А, Д21)/На, В, д( Д22, С, Д3/Н3)/Нс)/Нb) :-

  % Результат

 H2 > H1, H2 > Н3, % Среднее дерево глубже остальных

 На is Н1 + 1,     % Глубина левого поддерева

 Нс is Н3 + 1,     % Глубина правого поддерева

 Hb is На + 1,     % Глубина всего дерева

Программа доб_аvl, вычисляющая также глубину дерева и его поддеревьев, показана полностью на рис. 10.10.

Упражнение

10.3. Определите отношение

avl( Дер)

для проверки того, является ли Дер AVL-деревом, т.е. верно ли, что любые два его поддерева, подсоединенные к одной и той же вершине, отличаются по глубине не более чем на 1. Двоичные деревья представляйте в виде термов д( Лев, Кор, Прав) или nil.


% Вставление элемента в AVL-справочник

доб_аvl( nil/0, X, д( nil/0, X, nil/0)/1).

  % Добавить X к пустому дереву

доб_аvl( д( L, Y, R)/Ну, X, НовДер) :-

  % Добавить X к непустому дереву

 больше( Y, X),

 доб_аvl( L, X, д( L1, Z, L2)/ _ ),

  % Добавить к левому поддереву

 соединить( L1, Z, L2, Y, R, НовДер).

  % Сформировать новое дерево

доб_avl( д( L, Y, R)/Ну, X, НовДер) :-

 больше( X, Y),

 доб_avl( R, X, д( R1, Z, R2)/ _ ),

  % Добавить к правому поддереву

 соединить( L1, Y, Rl, Z, R2, НовДер).


соединить( Д1/Н1, А, д( Д21, В, Д22)/Н2, С, Д3/Н3,

 д( д( Д1/Н1, А, Д21)/На, В, д( Д22, С, L3/Н3)/Нс)/Нb) :-

 Н2 > H1, H2 > Н3,     % Среднее дерево глубже остальных

 На is H1 + 1,

 Hс is Н3 + 1,

 Нb is На + 1.

соединить( Д1/Н1, А, д( Д2/Н2, С, Д3/Н3,

 д( Д1/Н1, А, д( Д2/Н2, С, Д3/Н3)/Нс)/На) :-

 H1 >= H2, H1 >= Н3,   % "Глубокое" левое дерево

 max1( H2, Н3, Нс),

 max1( H1, Нс, На).

соединить( Д1/Н1, А, Д2/Н2, С, Д3/Н3,

 д( д( Д1/Н1, А, Д2/Н2)/На, С, Д3/Н3)/Нс) :-

 Н3 >= H2, Н3 >= H1,   % "Глубокое" правое дерево

 max1( H1, H2, На),

 max1( На, Н3, Нс).


max1( U, V, М) :-

 U > V, !, М is U + 1; % М равно 1 плюс max( U, V)


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Программирование на языке Пролог для искусственного интеллекта"

Книги похожие на "Программирование на языке Пролог для искусственного интеллекта" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Иван Братко

Иван Братко - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Иван Братко - Программирование на языке Пролог для искусственного интеллекта"

Отзывы читателей о книге "Программирование на языке Пролог для искусственного интеллекта", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.