» » » Томас Маклафлин - Обзор ядерных аварий с возникновением СЦР (LA-13638)


Авторские права

Томас Маклафлин - Обзор ядерных аварий с возникновением СЦР (LA-13638)

Здесь можно скачать бесплатно "Томас Маклафлин - Обзор ядерных аварий с возникновением СЦР (LA-13638)" в формате fb2, epub, txt, doc, pdf. Жанр: Физика, издательство Лос-Аламосская национальная лаборатория, год 2003. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Томас Маклафлин - Обзор ядерных аварий с возникновением СЦР (LA-13638)
Рейтинг:
Название:
Обзор ядерных аварий с возникновением СЦР (LA-13638)
Издательство:
Лос-Аламосская национальная лаборатория
Жанр:
Год:
2003
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Обзор ядерных аварий с возникновением СЦР (LA-13638)"

Описание и краткое содержание "Обзор ядерных аварий с возникновением СЦР (LA-13638)" читать бесплатно онлайн.



Обсуждаются ядерные аварии с возникновением самоподдерживающейся цепной реакции (СЦР) и характеристики разгона на мгновенных нейтронах на критических сборках. Рассмотрено 60 аварий на различного типа оборудовании и установках. Приводятся детали, позволяющие читателю понять физическую картину, химические процессы во время аварии, а также предоставляется информация об административной обстановке на промежутке времени, предшествующем возникновению аварии, в тех случаях, когда она доступна. Приводится картина изменения мощности во времени, приводятся данные об энерговыделении, последствиях и причинах аварии. Для описания тех аварийных ситуаций, которые возникли на промышленных предприятиях, в настоящую версию были включены два новых раздела. В первом из них содержится анализ и выводы о физических и ядерно-физических свойствах систем, в которых происходила цепная реакция. Во втором обобщаются наблюдения и обсуждаются извлеченные уроки. Обсуждение случаев резкого превышения мощности крупных энергетических реакторов не включено в данный отчет.






Для того чтобы оценить полную выделенную при аварии энергию, были сделаны анализы двух типов. Анализ первого типа основывался на результатах измерения мощности дозы — 103 мкР/с, выполненного на расстоянии 1,5 м от водяного бака через приблизительно 50 минут после аварии. Результат этого измерения был использован для оценки полного выхода: 5 X 1015 делений. Для определения полного энерговыделения был вырезан участок медного провода, находившийся на расстоянии 1,2 м от бака. По активации меди 63Cu (n, у) 64Cu было определено, что число делений составило ~1016. Однако этот метод, также как и метод, основанный на измерении γ-излучения от продуктов деления, имел значительные расчетные и экспериментальные погрешности.

Восстановление условий протекания аварии показывает, что после очередной остановки насоса 3.11.65 г. в баке начался процесс осаждения взвесей урана из циркулировавшей пульпы. К этому времени в баке уже существовал густой пастообразный осадок окислов урана.

В процессе осаждения взвесей образовалась надкритическая система, вероятно, на запаздывающих нейтронах с коротким периодом разгона мощности цепной реакции. Собственный фон нейтронов в баке составлял около 0,8 X 103 н/с. Самогашение цепной реакции произошло вследствие смешивания части осадка с раствором и переноса (выброса) пульпы в коммуникации и трубы холодильника. Все оборудование осталось герметичным, и радиоактивного загрязнения помещений не произошло. Благодаря тому, что на расстояниях ближе 4,5 м от бака никого не было и персонал быстро покинул здание, а также из-за сравнительно малого числа делений никто существенно не был облучен. Расчет суммарных доз облучения работников показал, что рабочий, находившийся на расстоянии 4,5 м от места аварии, мог получить максимальную дозу 3,4 бэра. Все сотрудники, находившиеся в здании 242, прошли медицинское обследование.

16. ПО «Маяк», г. Озерск, 16 декабря 1965 г

Раствор уранилнитрата, U(90 %), в реакторе-растворителе; многократные вспышки; незначительные дозы облучения персонала.

Авария произошла в цехе переработки отходов химико-металлургического завода. Перерабатываемые отходы поступали с операций растворения, осаждения и восстановления. Схема цеха переработки показана на рисунке 21. Труднорастворимые осадки первоначально подвергались прокалке для превращения урана, содержащегося обычно в количестве меньше одного весового процента, в закись-окись. В соответствии с регламентом, отходы с аномально высокой концентрацией урана, которые иногда возникали в результате переработки бракованных слитков, тиглей с трещинами и пр., направлялись в другие технологические зоны.

Оборудование химико-металлургического цеха представляло собой ряд перчаточных камер, в одной из которых располагались три одинаковые технологические цепочки, состоящие из реактора для растворения отходов, передаточной емкости, нутч-фильтра и сборника фильтратов (рис. 22).

Каждый из трех цилиндрических реакторов имел объем 100 л, диаметр 450 мм, эллиптическое днище, плоскую крышку с загрузочным люком, устройство для перемешивания пульсирующего типа и пароводяную нагревательную рубашку толщиной 25 мм.

На рисунке 22 представлены схема размещения оборудования в камере и направления движения реагентов. Каждый реактор был оснащен линией выдачи растворов в передаточную (напорную) емкость, линией вакуума, линиями сдувки и теплоносителя. Загрузка прокаленных отходов осуществлялась через загрузочный люк в крышке, имеющий уплотнение и запорное устройство.

Процесс растворения в азотной кислоте проводился с подогревом раствора во время перемешивания пульсатором. По завершении процесса растворения полученный таким образом раствор передавался с помощью вакуума в передаточную емкость, после чего раствор проходил через нутч-фильтр (для удаления нерастворенных твердых частиц) в сборник фильтратов.

Примерно за сутки до аварии, 15.12.1965 г., технолог смены выдал оператору задание на прокалку партии 1726 «богатых» отходов (содержание урана более 1 %) в камере, печи которой были предназначены только для прокалки «бедных» отходов (содержание урана менее 1 %), что было нарушением инструкции по ядерной безопасности.

После прокалки из этой партии «богатых» отходов была отобрана проба, и до получения результатов анализа контейнер с «богатыми» отходами был передан в другую камеру, в которой уже хранилось много других отходов, на комплектацию партии отходов для последующей передачи на растворение.

В аналитической лаборатории определили массовую концентрацию урана в пробе 1726, которая составила 44 % (весовых). Этот результат был записан в журнале для проб, но не был передан в цех для записи в учетную карточку.

Оператор, комплектовавший отходы на растворение, обнаружил отсутствие результата анализа для пробы номер 1726 и по телефону запросил его в аналитической лаборатории.

В результате взаимного недопонимания между лаборантом и оператором последний записал результат анализа пробы 1826, в которой массовая доля урана была 0,32 %, т. е. в ~138 раз меньше, чем в пробе 1726. Этот результат оператор внес в учетную карточку и на этикетку контейнера с «богатыми» отходами.

Рисунок 21. Схема химико-металлургического цеха.

На следующий день, 16.12.1965 г., отходы массой 5 кг, включая около 2,2 кг урана с обогащением 90 %, были переданы на растворение как «бедные» и загружены в реактор, для которого норма загрузки составляла 0,3 кг урана, т. е. имело место превышение нормы загрузки более чем в 7 раз.

К этому моменту в двух других реакторах проводилось растворение «бедных» отходов.

«Богатые» отходы были загружены в реактор № 1. Согласно технологическому регламенту, растворение должно было производиться при температуре ~100 °C и при непрерывном перемешивании в течение 1,5 часов. Однако этот процесс был остановлен через 40 минут в связи с началом плановой уборки внутри камеры перед сдачей смены.

Примерно через 10 минут после выключения нагрева и перемешивания оператор, производивший уборку, услышал характерный звук кратковременного срабатывания ближайшего аварийного сигнализатора о возникновении ядерной аварии, покинул рабочее место и направился на центральный пульт управления для выяснения причин срабатывания сигнализатора. В этот момент произошло повторное срабатывание ближайшего сигнализатора. В последующие несколько секунд начали срабатывать сигнализаторы, более удаленные от реактора № 1. Всего в цехе сработало несколько десятков сигнализаторов типа УСИД-1.

Различимая во времени последовательность их срабатывания по мере увеличения расстояния между ними и местом аварии указывала на то, что нарастание мощности 1-го пика происходило на запаздывающих нейтронах. Весь персонал оперативно эвакуировался из цеха и укрылся в подземном переходе, как это и было предусмотрено инструкцией и отрабатывалось на противоаварийных тренировках.

Срабатывание сигнализаторов и эвакуация персонала относились к моменту времени около 22 ч 10 мин 16.12.1965 г.

До прибытия противоаварийной комиссии (23 часа) наблюдение за динамикой СЦР велось по показаниям стационарных дозиметрических приборов (у-излучение) и приборов РНС-6 технологического контроля (нейтронные поля) в другом здании на расстояния ~50 метров от места аварии. Было зафиксировано 4 пика с интервалом 15–20 минут. После прибытия комиссии оценка радиационной обстановки показала, что помещение центрального пульта управления (рис. 21) безопасно для персонала даже в моменты пиков мощности, и дальнейшие наблюдения и руководство противоаварийными работами осуществлялось из помещения центрального пульта управления.

Рисунок 22. Схема размещения оборудования в камере.

Опрос персонала, анализ технологической и учетной документации, анализ диаграммных записей показаний стационарных дозиметрических приборов, диагностика у-полей коллимированным носимым дозиметром "Карагач" позволили установить, что цепная реакция, вероятнее всего, протекает либо в реакторе № 1, либо в передаточной (напорной) емкости (рис. 22).

По результатам измерений мощность дозы γ-излучения через ~1,5 минуты после очередного пика на расстоянии ~2 м составляла в среднем 2,2 мР/с.

Основываясь на том, что имелась техническая возможность для дистанционной подачи раствора кадмия в промежуточную емкость, было принято решение реализовать в первую очередь эту возможность с использованием существовавших коммуникаций. Эта операция была выполнена после 9-го пика мощности.

После заливки раствора кадмия было решено сделать контрольную паузу около 40 минут, чтобы убедиться в эффективности принятых мер. Однако уже через 20 минут был зафиксирован очередной 10-й пик, что позволило однозначно определить место аварии — реактор № 1 (рис. 22).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Обзор ядерных аварий с возникновением СЦР (LA-13638)"

Книги похожие на "Обзор ядерных аварий с возникновением СЦР (LA-13638)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Томас Маклафлин

Томас Маклафлин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Томас Маклафлин - Обзор ядерных аварий с возникновением СЦР (LA-13638)"

Отзывы читателей о книге "Обзор ядерных аварий с возникновением СЦР (LA-13638)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.