» » » » Л. Наумова - Основы общей экологии


Авторские права

Л. Наумова - Основы общей экологии

Здесь можно скачать бесплатно "Л. Наумова - Основы общей экологии" в формате fb2, epub, txt, doc, pdf. Жанр: Современная проза, издательство Логос, год 2003. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Л. Наумова - Основы общей экологии
Рейтинг:
Название:
Основы общей экологии
Автор:
Издательство:
Логос
Год:
2003
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Основы общей экологии"

Описание и краткое содержание "Основы общей экологии" читать бесплатно онлайн.



В учебнике рассматривается весь спектр вопросов общей (биологической), экологии: история, экология видов (аутэкология – факторы среды, адаптации организмов, жизеннные стратегии), популяционная экология (характеристика популяций, их динамика и взаимоотношения), экология экосистем (функциональная структура, потоки энергии, разнообразие экосистем и их динамика), биосфера (структура и круговороты основных биогенов, ноосфера).

Для студентов высших учебных заведений, обучающихся по направлениям и специальностям: «Экология», «Биология», «Медицина», «Сельское хозяйство». Представляет интерес для научных работников в области биологии, экологии, лесного и сельского хозяйства.






В популяциях растений часто отмечается значительная генотипическая вариация за счет сосуществования нескольких экотипов, которые определяются как «…внутривидовые генетически предопределенные локальные соответствия между организмами и средой» (Бигон и др., 1989, т. 1, с. 49).

Удивительные примеры сосуществования экотипов клевера ползучего были выявлены Р. Теркингтоном и Дж. Харпером (Turkington, 1978; Turkington, Harper, 1979). Клевер ползучий легко размножается вегетативно, авторы клонировали особи клевера, которые произрастали рядом с разными злаками (ежой сборной, бухарником, райграсом многолетним и др.). Как оказалось, отношения соседства привели к тонкой биотической дифференциации – отбору особых экотипов клевера, которые в культуре «узнавали» своего соседа и отвечали на это усилением роста.

В последние годы большой материал о генотипическом разнообразии внутри популяций растений получен методами изоферментного анализа (изоферментных генетических маркеров). В частности, было выявлено, что в большинстве популяций древесных растений отмечается достаточно высокое генотипическое разнообразие, возрастающее в экстремальных условиях у границ экологического ареала вида.

Генотипическая вариация в популяциях некоторых видов животных, видимо, ниже, чем в популяциях растений, так как, обладая подвижностью, животные разных экотипов распределяются по популяциям или микросайтам внутри одной популяции. В то же время отмечены случаи сосуществования в одной популяции животных нескольких (чаще двух) экотипов у малоподвижных видов, таких, как улитки (Бигон и др., 1989). В популяциях саранчей есть две формы, резко отличающиеся по внешнему виду – «стационарная» (одиночная) и мигрирующая (стадная), причем соотношение этих форм меняется в зависимости от условий года.

Генотипическая гетерогенность популяций, также как и фенотипическая, повышает эффективность использования ресурсов и способствует повышению продуктивности и устойчивости. Например наличие в составе популяции растений раннецветущего и позднецветущего экотипов повышает ее устойчивость к заморозкам, наличие экотипа, более активно накапливающего цианиды – устойчивость к фитофагам и т.д.

Гетерогенность природных популяций моделируется в практике сельского хозяйства: используются смеси из нескольких сортов культурных растений с разными экологическими особенностями (более засухоустойчивого и менее засухоустойчивого, высокого и низкого и т.д.). Такие смеси сортов дают более устойчивый урожай, хотя в отдельные годы, наиболее благоприятные для одного или другого сорта-экотипа, его урожай в чистом посеве может быть выше.

Наличие экотипов, устойчивых (преадаптированных) к действию гербицидов, объясняет феномен быстрого «приспособления» сорных видов к химическим мерам контроля их популяций. Подобные экотипы могут отбираться и по устойчивости к загрязнению почвы тяжелыми металлами.

Генотипическое разнообразие внутри популяций ставит дополнительные задачи перед охраной биоразнообразия, которая должна обеспечивать сохранение не только видов, но и их экотипов.

Контрольные вопросы

1. Какую роль играет фенотипическая дифференциация особей в популяциях растений и животных?

2. Почему генотипическая дифференциация особей в популяциях растений обычно выше, чем в популяциях подвижных животных?

3. Как используется свойство гетерогенности популяций в сельском хозяйстве?

Темы докладов на семинарских занятиях

1. Конкуренция как основная форма взаимоотношений особей в популяции.

2. Положительные взамодействия особей в популяциях.

3. Гетерогенность популяций как адаптация для повышения их устойчивости.

Глава 7. Динамика популяций

Изучение изменений признаков популяций во времени – наиболее сложный раздел популяционной экологии, который включает характеристику закономерностей динамики численности и биомассы популяций. Сложность оценки этих процессов заключается в том, что их результаты интегрально отражают действие множества взаимозависимых факторов. По этой причине даже после того, как описана закономерность изменения размера популяции, далеко не всегда ее можно однозначно объяснить. Главный фактор, который вызвал этот процесс, может влиять на него не только прямо, но и опосредствованно через один или несколько факторов-посредников.

При изучении динамики популяций важен учет «биологического времени», на основании которого устанавливается минимальная длительность периода наблюдений. Так для изучения закономерностей динамики популяции тли достаточно нескольких недель, полевки – нескольких лет, а долгожителя-слона – нужны десятки лет. Соответственно для изучения одноклеточных водорослей достаточно нескольких дней, изучение криля требует нескольких месяцев, а наблюдения за популяцией китов, как и слонов, проводятся в течение десятков лет.

7.1. Динамические характеристики популяций

Плотность популяции регулируется четырьмя параметрами:

1. рождаемостью – числом особей, родившихся за определенный промежуток времени. Этот промежуток устанавливается в соответствующем масштабе биологического времени. Для бактерий он может быть равен одному часу, для планктонных водорослей – суткам, для насекомых – неделе или месяцу, для крупных млекопитающих (включая человека) – году;

2. смертностью – числом особей, умерших за ту же единицу времени (неважно, своей смертью или погибших, например съеденных);

3. скоростью иммиграции особей – числом особей, появившихся в данной популяции, из других популяций (за ту же единицу времени);

4. скоростью эмиграции особей – числом особей, покинувших данную популяцию за единицу времени.

Формула изменения численности популяции выглядит следующим образом:

Если пренебречь показателями иммиграции и эмиграции особей (их, как отмечалось, почти нет у растений), то можно оценить мгновенную скорость роста популяции, т.е. баланс между рождаемостью и численностью за единицу времени. У стабильных популяций мгновенная скорость роста равна нулю, у растущих – является положительным числом, у разрушающихся – отрицательным. Впрочем, даже у стабильных популяций продолжаются процессы циклических изменений численности (см. 12.2).

Контрольные вопросы

1. Дайте определение четырем основным параметрам, определяющим динамику популяции.

2. Напишите формулу изменения численности популяции.

3. Что такое мгновенная скорость роста популяции?

7.2. Кривые выживания

Для изучения закономерностей динамики популяций составляются таблицы выживания. В этих таблицах строками отражаются классы возраста, а в столбцах показывается число особей, которые сохранились или погибли. Величина градаций классов зависит от продолжительности жизни изучаемых организмов (т.е. от биологического времени). Для человека используют интервал в 5 лет, для многих насекомых – одну неделю. Если есть возможность длительное время следить за динамикой вымирания особей в популяциях (регистрировать возраст наступления смерти всех членов одной возрастной когорты, т.е. группы особей, родившихся за короткий относительно общей продолжительности жизни организма период), то составляют динамические таблицы выживания. Однако для долгоживущих или подвижных видов получить данные для построения динамических таблиц крайне трудно. По этой причине составляют таблицы выживания на основании краткосрочных наблюдений за смертностью во всех возрастных группах. Такие таблицы называются статическими, их пример – данные о демографии женской части населения Канады (табл. 6).


Таблица 6 Статическая демографическая таблица женского населения Канады на 1980 г. (по Krebs, 1985)





Рис. 14. Три типа кривых выживания. Пояснения в тексте.


На основе таблиц выживания строят кривые выживания (рис. 14). Р. Перль предложил различать три типа таких кривых.

Кривая I типа (сильно выпуклая) соответствует ситуации, когда смертность ничтожно мала в молодом и среднем возрасте, но в старом возрасте быстро увеличивается и все особи погибают за короткий срок. Перль назвал эту кривую «кривой дрозофилы». К кривой этого типа приближается кривая выживания человека в развитых странах.

Кривая II типа (диагональная) представляет ситуацию, когда во всех возрастных классах смертность особей одинакова. Такова динамика популяций многих рыб, пресмыкающихся, птиц, многолетних травянистых растений.

Кривая III типа (сильно вогнутая) выражает другой случай – массовую гибель особей в начальный период жизни, а затем низкую смертность выживших особей. Эту кривую Перль назвал «типом устрицы». Ей соответствует и возрастная динамика большинства видов деревьев: высока смертность всходов и молодых растений, однако с возрастом интенсивность самоизреживания резко снижается, и постепенно древостой достигает «конечной плотности», которая отражает особенности биологии вида и условий среды. Она тем ниже, чем благоприятнее условия (выше бонитет насаждений).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Основы общей экологии"

Книги похожие на "Основы общей экологии" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Л. Наумова

Л. Наумова - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Л. Наумова - Основы общей экологии"

Отзывы читателей о книге "Основы общей экологии", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.