Леопольд Инфельд - Эварист Галуа (Избранник богов)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Эварист Галуа (Избранник богов)"
Описание и краткое содержание "Эварист Галуа (Избранник богов)" читать бесплатно онлайн.
Книга Леопольда Инфельда рассказывает удивительную историю Эвариста Галуа, который в возрасте двадцати лет отдал жизнь за Французскую республику. В ночь накануне гибели он написал несколько страниц алгебраических уравнений, сделавших его одним из величайших математиков всех времен.
Короткая жизнь Галуа была полна героизма, страданий и обманутых надежд. Его почти дерзкая уверенность в собственном необычайном математическом даровании стала причиной того, что преподаватели преследовали его, а ученые игнорировали. Исключенный из школы за свой неукротимый республиканский дух, он был затем брошен в тюрьму и, наконец, стал жертвой дуэли, подстроенной его политическими противниками.
Когда Галуа умер, он был известен только как неистовый республиканец, ненавидевший тиранию и боровшийся за Францию и свободу. Но бессмертия Галуа достиг тем, что успел написать за тринадцать часов до смерти и что ныне ученые исследуют как «группу Галуа», «поле Галуа», «теорию Галуа».
С биографией Галуа искусно переплетается рассказ о Франции XIX века — Франции после поражения Наполеона, во время реставрации Бурбонов; Франции Гюго, Дюма, Делакруа; рассказ о бурных днях июльской революции 1830 года, в которой Эварист Галуа сыграл столь трагическую роль.
Книга адресована самому широкому кругу читателей, но и математик найдет в ней для себя много интересного.
На других уроках, в каждый свободный момент этого дня он читал, поглощая теоремы, по-своему доказывая их, по-своему рассуждая. В день, когда он начал читать Лежандра, он дошел до «Книги IV. О правильных многоугольниках и окружностях».
Встретилась задача: «Найти окружность, которая как можно меньше отличалась бы от данного правильного многоугольника».
Он подумал: «Что это за число π?»
Ища ответа, он обратился к напечатанным мелким шрифтом замечаниям для особо успевающих студентов. Там он нашел доказательство того, что отношение длины окружности к диаметру, а также квадрат этого отношения — иррациональные величины. Читать стало труднее. Ему встретились новые знаки, такие, как tgx, значение которого было ему неизвестно. Он перешел к последней части книги Лежандра — «Трактату о тригонометрии», где давалось определение этому и другим тригонометрическим символам.
Когда в четверть десятого вечера во всех спальнях потушили свет, Эварист лежал на кровати с открытыми глазами, глядя в пространство. Он ясно видел все теоремы, с которыми познакомился за день. Появились геометрические фигуры, их перечеркнули уравнения, растянувшиеся во все стороны. Какая-то новая теорема настойчиво требовала, чтобы он доказал ее. Мир рассуждений и мир снов смешались в причудливом переплетении рассудка и воображения, где люди были похожи на формулы, а теоремы — на живые существа. Эварист пытался разделить для себя эти два мира, но так и не смог помешать им сливаться воедино всю ночь напролет, всю бессонную и радостно-тревожную ночь.
На другое утро он опять читал Лежандра. Впервые с тех пор, как поступил в Луи-ле-Гран, он не думал про отца, не чувствовал запаха сена, не слышал колокольного перезвона в Бур-ля-Рен. Его мозг горел новым пламенем, потушить которое могла только смерть. В два дня он кончил книгу Лежандра, рассчитанную на два года учения. Он знал в ней все. Знал и то, что познанное им останется и будет расти у него в голове до последнего дня его жизни.
На уроке математики к Эваристу обратился профессор Вернье:
— Вы в этом классе новичок.
Эварист встал с места. Взгляд у мсье Вернье был усталый, но приветливый.
— Это для вас новая дисциплина. Она может вначале показаться вам трудной. Вам понадобится время, чтобы привыкнуть к ней. Я предоставлю вам, скажем, месяц сроку, а потом проверю вас.
Эварист стоял молча, уставившись профессору в лицо. Мсье Вернье взглянул на него с нетерпением.
— Как вы думаете, вам хватит месяца?
— Да, мсье.
Мсье Вернье начал урок. Темой его были правильные вписанные и описанные многоугольники. Большинство студентов, казалось, скучали. Голос преподавателя звучал тускло и невыразительно. Он повторял теоремы в том же виде, как они были представлены в книге Лежандра. При доказательстве он применял те же обозначения, те же рассуждения, по нескольку раз повторяя одно и то же. Преподаватель переносил рисунки из книги на доску, а ученики — с доски в тетради. Им задавали вопросы, и они повторяли фразы, услышанные от преподавателя, — те самые, которые были напечатаны в книге Лежандра. Чаще всего они учили эти теоремы, как заучивают латинские или греческие стихи, — механически повторяя их и не стараясь раскрыть содержание.
Эварист видел, что здесь выхолащивают самую душу геометрии, оставляя лишь безжизненный остов, набор скучных, бессмысленных фраз, зазубриваемых изо дня в день. Он видел, с каким непревзойденным мастерством школа ухитряется превратить красоту в скуку, разумное рассуждение — в догму, греческий храм — в груду камней.
В библиотеке лицея царила разруха. Окна не закрывались, освещение было скверным, стены и книги — сырыми. Лишь немногие ученики пользовались этой библиотекой, где находились многочисленные ценные труды по латыни, греческому и истории, но всего горсточка книг по математике.
Когда Эварист выбрал «Решение численных уравнений» Лагранжа, библиотекарь попробовал пошутить:
— Вам известно правило: книгу можно держать только восемь дней. Вы что, собираетесь кончить ее за восемь дней?
— Постараюсь.
Во введении он прочел определение алгебры:
«Алгебра в широком значении слова — это искусство определения неизвестных величин посредством функций известных или принимаемых за известные, а также искусство нахождения общих решений уравнений. Такое решение заключается в нахождении для всех уравнений одной и той же степени таких функций коэффициентов алгебраических уравнений, которые могут представлять собой их корни. В настоящее время эти функции найдены только для уравнений первой, второй, третьей и четвертой степени…»
Он прочел книгу Лагранжа не так быстро, как книгу Лежандра. Впечатления его были противоречивы. Как ни увлек его этот великий труд, он оставил у него и чувство неудовлетворенности, возраставшее с каждой прочитанной страницей. В геометрии он ясно видел общее построение, здесь — нет. И он знал, что не видит его, потому что его не существует. В здании геометрии видны были стиль, гармония, красота. Алгебра же была странным сочетанием построек различных стилей, большинство из которых было лишь заложено, и ни одно не завершено. За нагромождением построек не чувствовалось замысла великого зодчего.
Он старался определить причину своего недовольства. Думал об основной задаче алгебры — задаче решения алгебраических уравнений.
Алгебра, то есть элементарная алгебра, была порождена именно этой задачей. Истоки ее восходят к давним временам. Современная алгебра, с ее обширным полем исследований сегодняшнего дня, тоже зародилась из этой задачи, и истоки ее восходят к работе Галуа.
Итак, решение уравнения может быть либо легкой задачей, известной еще в античные времена; либо трудной задачей, с которой справились в период Возрождения, либо, в каком-то смысле, как это признавали Абель и Галуа, неразрешимой задачей.
Сказать, что если 2x-1=0, то x=1/2, это значит решить уравнение столь незначительное, что оно вряд ли достойно этого названия. Отсюда можно подняться ступенькой выше, к уравнению второй степени, подобному x2-5x+6=0. Здесь нам тоже требуется число (или числа), которые, заменив х, удовлетворят условиям этого уравнения. Другими словами, мы находим корни этого уравнения. Действительно, вставьте в уравнение число 2 или число 3 вместо х, и вы увидите, что любая эта цифра подходит к уравнению x2-5x+6=0 (x2 означает x раз x; 5x означает 5 раз x).
Даже изучение этих сравнительно простых уравнений второй степени повело к далеко ведущему открытию мнимых и комплексных чисел.
Легко возразить: «Это тонкая паутина абстрактных понятий, умозрительных задач, весьма далеких от нашей обычной жизни». Однако уравнение второй степени приводит нас к комплексным числам — повседневному орудию инженеров и физиков. Из размышлений математика, из абстрактной нити его рассуждений возникли современная наука, современная техника.
В уравнении 2x-1=0 числа 2 и 1 являются коэффициентами. Мы находим решение этого очень простого уравнения, разделив один на два. Подобным образом в уравнении x2-5x+6=0 числа 1, -5, 6 — тоже коэффициенты. Корни этого уравнения можно найти, проделав с этими коэффициентами определенные действия. В самом деле, мы помним, что этими корнями были 2 и 3. Числа 2 и 3 могут быть найдены действиями вот таких простых формул:
Этими формулами можно воспользоваться, если знать коэффициенты, над которыми нужно совершать действия. В случае уравнения второй степени они еще достаточно просты, хотя значительно сложнее, чем для уравнений первой степени.
Некоторые алгебраические уравнения можно решить в радикалах. Это значит, что можно найти их решение конечным числом действий, совершаемых с коэффициентами алгебраических уравнений. Такими действиями являются рациональные действия (сложение, вычитание, умножение, деление) и извлечение корней. Если существует решение, которое можно достигнуть этими действиями, мы говорим, что уравнение можно решить в радикалах.
Уравнение первой степени — это пустяк. Уравнение второй степени несложно. При решении уравнений третьей степени возникают трудности, но это посильная задача, и она была разрешена почти за триста лет до того, как Галуа появился на свет. Корни, иными словами, решение уравнения третьей степени, можно найти путями, известными каждому математику: задача может быть сведена к уже известной — к решению уравнения второй степени. В математике этот прием используется постоянно: решение новой задачи сводится к уже известному решению старой. Подобным же образом алгебраическое уравнение четвертой степени может быть решено в радикалах, ибо задача его решения может быть сведена к задаче решения алгебраического уравнения третьей степени, а оно известно.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Эварист Галуа (Избранник богов)"
Книги похожие на "Эварист Галуа (Избранник богов)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Леопольд Инфельд - Эварист Галуа (Избранник богов)"
Отзывы читателей о книге "Эварист Галуа (Избранник богов)", комментарии и мнения людей о произведении.