» » » Жак Арсак - Программирование игр и головоломок


Авторские права

Жак Арсак - Программирование игр и головоломок

Здесь можно скачать бесплатно "Жак Арсак - Программирование игр и головоломок" в формате fb2, epub, txt, doc, pdf. Жанр: Программирование, издательство Наука. Гл. ред. физ.-мат. лит., год 1990. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Жак Арсак - Программирование игр и головоломок
Рейтинг:
Название:
Программирование игр и головоломок
Автор:
Издательство:
Наука. Гл. ред. физ.-мат. лит.
Год:
1990
ISBN:
5-02-013959-9
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Программирование игр и головоломок"

Описание и краткое содержание "Программирование игр и головоломок" читать бесплатно онлайн.



Рассматриваются способы программирования различных занимательных игр и головоломок с числами, геометрическими фигурами и др. Изложение большинства игр и головоломок ведется в несколько этапов. Сначала разъясняется сама постановка задачи и требования, предъявляемые к алгоритму ее решения.

В следующем разделе книги обсуждается сам алгоритм и возможные пути его реализации.

В конце книга по многим играм и головоломкам даются наброски их программной реализации. Используемый при этом язык типа Паскаля допускает перевод на другие широко распространенные языки программирования.

Для начинающих программистов, студентов вузов и техникумов.






* Головоломка 29. Дихотомический поиск.

Это — совершенно известная задача. Вам предлагается упорядоченная таблица попарно различных элементов; например, в порядке возрастания. Вам предлагается, кроме того, другой элемент: его нужно разместить в таблицу.

Следовало бы уточнить (хоть это и не в моих правилах: обычно я предоставляю вам заботу об уточнении. В этой книге вовсе не я тот человек, который должен аккуратно работать…). Пусть a — таблица с n элементами, упорядоченная так, что

a[i] < a[i + 1] для 1 < in,

и x — элемент, который нужно разместить. Его место

0, если xa[1],

i, если a[i] < xa[i + 1],

n, если a[n] < x.

Один сотрудник факультета Нотр-Дам де ла Пэ в Намюре изучил 18 программ, опубликованных различными авторами по всему свету и в каждой нашел хоть что-то, за что можно упрекнуть. Всякий раз, когда я получаю новую книгу по программированию (к счастью, я получаю не все), я смотрю, нет ли там случайно исследования этой задачи. Почти во всех случаях это так. Настоящий «ослиный мост»[16] информатики…

* Головоломка 30. Равенство «с точностью до пробелов».

Пусть даны две буквенные цепочки: a и b. Составьте программу, которая может сказать, совпадают ли эти цепочки с точностью до пробелов. Внимание: вы не имеете права изменять цепочки a и b, вы не имеете права порождать новые цепочки. Это запрещает вам удалить пробелы из обеих цепочек или копировать их, удаляя пробелы. Под равенством с точностью до пробелов нужно понимать, что обе цепочки должны быть образованы одними и теми же буквами в одном и том же порядке, если не учитывать пробелы. Такая задача встречается в системах, связанных с практической работой, с программами, потому что пробелы чаще всего рассматриваются в операторах и командах как незначащие.

Если вы находите это совершенно элементарным, вы можете изучить, являются ли данные цепочки обращениями друг друга с точностью до пробелов. Вы можете также увидеть, является ли цепочка палиндромом (т. е. совпадает со своим обращением) с точностью до пробелов, Так, палиндромами являются

А РОЗА УПАЛА НА ЛАПУ АЗОРА

АРГЕНТИНА МАНИТ НЕГРА

Попытайтесь получить правильную (это уж как минимум) и элегантную программу.

Головоломка 31. Анаграмма.

Еще одна головоломка, вопреки ее внешнему виду, Дело в том, чтобы сказать, являются ли две цепочки букв анаграммами друг друга (т. е. получаются ли они друг из друга перестановками букв). Эта задача имеет совершенно различный вид в зависимости от того, разрешите ли вы себе изменять обе цепочки или порождать новые цепочки, или нет. Выбор я предоставляю вам… Может быть, вы заметите, что различные решения следует оценивать в зависимости от соотношения между размерами цепочек и используемого алфавита. Подумайте о крайних случаях: алфавит из 26 букв и цепочка из 1000 символов; алфавит из 1000 символов (это вроде китайского…) и цепочка из 10 символов.

Головоломка 32. Анаграмма с точностью до пробелов.

Та же головоломка, но, кроме того, пробелы не считаются. Вы можете ее еще немного обобщить: являются ли две страницы текста анаграммами одна другой, не считая знаков препинания?

??* Головоломка 33. Переставить две части вектора.

Вам дана таблица a с n элементами. Требуется переставить части с номерами от 1 до m и от m + 1 до n (рис. 33).

Порядок элементов в каждой ив частой должен быть сохранен[17]. Вы не должны использовать вспомогательную таблицу, Каждый элемент должен быть перемещен не более одного раза.

Это — довольно любопытная задача, которая была предложена мне Давидом Грисом, и которую он исследовал в своей книге [GRI] Это — один из редких случаев, когда я не смог вывести программу из гипотезы рекуррентности, как я это обычно делал [ARS]. В данном случае я сначала придумал программу (ничего особенного, вы ее, конечно, прекрасно составите). И только после того — именно после того — я смог показать, почему эта программа работает правильно.

* Головоломка 34. Задача о равнинах.

Вам дается упорядоченная таблица каких-то элементов, например, телефонный справочник (где фамилии расположены в алфавитном порядке. Здесь мы не учитываем имен). В таблице могут встретиться омонимы (иначе говоря, последовательности из совпадающих элементов), как в телефонном справочнике. Требуется найти наиболее длинные омонимы: больше ли МАРТЫНОВых, чем СЕМЕНОВых?

Я использовал для этой головоломки название, данное ей в книге Давида Гриса [GRI]. Если вместо того, чтобы веять для иллюстрации таблицу фамилий, вы берете

таблицу чисел, расположенных в неубывающем порядке, то такая таблица составлена иэ участков возрастания, подъемов и ровных участков, «равнин». Тогда нужно найти наиболее длинную равнину.

Эта задача оказывается не вполне одной и той же в зависимости от того, ищете ли вы только наибольшую длину равнины (что делает Д. Грис) или ищете одновременно и длину ряда омонимов и сам наиболее часто встречающийся омоним (что предлагаю вам я).

G этой задачей связана неприятная для меня история. Я намеревался продумать эту задачу в Нанси также, впрочем, как и Давид Грис. Я довольно легко обнаружил два решения, различные по духу, но не по виду, что поставило передо мной задачи преобразования программ (каким образом различные отправные точки могут привести, с точностью до нескольких манипуляций, к одной и той же программе). Как и рассказывает в своей книге Давид Грис, я очень гордился своими решениями, пока не обнаружил в той же книге Д. Гриса решение, принадлежащее Майклу Гриффиту: его решение намного проще…

Сумеете ли вы найти простое решение?

??** Головоломка 35. Самая длинная возрастающая подпоследовательность.

Пусть дана таблица a из n каких-либо чисел (но если это может доставить вам удовольствие — из натуральных чисел. Это неважно). Подпоследовательность этой таблицы есть последовательность чисел, выделенная в порядке возрастания номеров. Более точно, последовательность

a[i1] a[i2] a[i3] … a[ip]

есть подпоследовательность последовательности а, если i1 < i2 < … < ip. (Числа идут в одном и том же порядке в таблице a и в ее подпоследовательности, но эта формулировка двусмысленна.)

Последовательность возрастает[18], если, кроме того,

a[i1] ≤ a[i2] ≤ a[i3] ≤ … ≤ a[ip].

Требуется выделить из a самую длинную возрастающую подпоследовательность. Вы имеете право использовать вспомогательные векторы.

Можно найти исследование этой задачи в нескольких книгах и на нее изведено немало чернил (да и мела тоже: я видел ее исследования в трудах международных семинаров). Кроме того, совершенно не одно и то же — довольствуемся ли мы определением максимальной длины и даже последнего члена самой длинной возрастающей подпоследовательности последовательности a (внимание: может случиться, что есть много таких подпоследовательностей одинаковой длины) или же мы хотим получить также список членов такой максимальной последовательности.

Иногда в условие вводят дополнительное ограничение: число требуемых операций должно быть порядка n * In(n). Я не уверен, что это действительное ограничение. Если вы найдете решение, то оно, скорее всего, будет обладать этим свойством.

??** Головоломка 36. Самое длинное слово.

Заглавие вводит в заблуждение… Однажды мы проводили экзамен у наших учеников в DEUG по составлению программы, которая сообщает, скрыто ли данное слово в данной фразе, иначе говоря, встречаются ли буквы данного слова в том же порядке в данной фразе. Так, в следующей фразе (взятой из «Ярмарки у скупцов» Жана Шарля):

«Je peux te donner lʼadresse dʼun excellent cireur de parquets: il se rend à domicile»

слово TONDEUSE скрыто (соответствующие буквы подчеркнуты), но ни слово GAZON (нет буквы G), ни слово DOMINATEUR (все буквы есть, но в неправильном порядке) не содержатся.

Но это не головоломка, это совсем просто (уж это точно…). Я спрашиваю вас о другом — найти, какое слово наибольшей длины скрыто одновременно в двух фразах. На самом деле, конечно, речь идет не о слове, а скорее о последовательности букв: какая наиболее длинная последовательность букв может быть обнаружена в одном и том же порядке в двух фразах. Если это может вам помочь, то вот другой пример из «Ярмарки у скупцов»:


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Программирование игр и головоломок"

Книги похожие на "Программирование игр и головоломок" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Жак Арсак

Жак Арсак - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Жак Арсак - Программирование игр и головоломок"

Отзывы читателей о книге "Программирование игр и головоломок", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.