» » » » Генри Дьюдени - Пятьсот двадцать головоломок


Авторские права

Генри Дьюдени - Пятьсот двадцать головоломок

Здесь можно скачать бесплатно "Генри Дьюдени - Пятьсот двадцать головоломок" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Мир, год 1975. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Генри Дьюдени - Пятьсот двадцать головоломок
Рейтинг:
Название:
Пятьсот двадцать головоломок
Издательство:
Мир
Год:
1975
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Пятьсот двадцать головоломок"

Описание и краткое содержание "Пятьсот двадцать головоломок" читать бесплатно онлайн.



Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.

В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.

Книга доставит удовольствие всем любителям занимательной математики.






70. Когда Браун оставил позади всего лишь ⅙, или , всей дистанции, Томкинс уже прошел ⅚ минус , или , всей дистанции. Следовательно, скорость Томкинса в раза больше скорости Брауна. Брауну осталось пробежать ⅚, а Томкинсу — только ⅙ всей дистанции. Следовательно, Браун, чтобы прибежать хотя бы одновременно, должен развить скорость, в 5 раз превышающую скорость Томкинса, то есть в 5 раз большую , или бежать в раза быстрее, чем он бежал первоначально. Однако вопрос ставился не «во сколько раз», а «на сколько», а «в раза быстрее» — это все равно, что быстрее на первоначальной скорости Брауна. Правильным ответом, следовательно, будет: на 20¼ первоначальной скорости быстрее, хотя похоже на то, что такая рекомендация практически неосуществима.

71. Утверждение о равенстве средних скоростей ошибочно. В действительности средние скорости кораблей не равны. Первый корабль проходит милю за ч в одном направлении и за ⅛ ч в обратном. Полусумма этих дробей равна . Следовательно, средняя скорость, с которой первый корабль проходит 400 миль, равна 1 миле за ч. Средняя скорость второго корабля составляет 1 милю за ч.

72. Расстояние между двумя пунктами равно 18 км. Точки встречи отстоят от A и B на 10 и 12 км соответственно. Умножьте 10 (первое расстояние) на 3 и вычтите второе расстояние — 12. Что может быть проще? Испробуйте другие расстояния до точек встречи (следя за тем, чтобы первое расстояние составляло более ⅔ второго) и вы обнаружите, что это правило действует с неизменным успехом.

73. Собака бежала со скоростью 16 км/ч. Ключом к решению задачи служат следующие рассуждения. Расстояние, которое человеку осталось пройти рядом с собакой, составляло 81 м, или 34 (пес возвращался 4 раза), а длина дорожки равнялась 625 м, или 54. Поэтому разность скоростей (выраженных в км/ч) человека и собаки (то есть 12) и сумма их скоростей (20) должны находиться в отношении 3 : 5.

74. Вполне очевидно, что Бакстер догонит Андерсона через один час, поскольку к этому времени они пройдут по 4 км в одном направлении. Далее, скорость собаки составляет 10 км/ч; следовательно, за этот час она пробежит 10 км! Когда эту головоломку предложили одному французскому профессору математики, тот воскликнул: «Mon Dieu, quelle sґerie!»,[31] совершенно не заметив, как просто она решается.

75. Девять исследователей A, B, C, D, E, F, G, H, J проезжают 40 миль, затратив на это по полному баку горючего. Затем A передает по 1 галлону остальным восьми участникам и поворачивает назад, причем у него остается 1 галлон на обратную дорогу. Остальные восемь участников едут еще 40 миль, затем B передает по 1 галлону семи другим исследователям. Двух галлонов ему как раз хватает на обратный путь. Семеро исследователей проезжают еще 40 миль, затем C передает остальным шести по 1 галлону и возвращается домой, затратив на обратный путь 3 галлона. Шестеро исследователей проезжают еще 40 миль, после чего D передает каждому по 1 галлону и возвращается назад. Пятеро оставшихся проезжают еще 40 миль, затем E дает каждому по 1 галлону и возвращается назад. Теперь уже четверо исследователей продвигаются еще на 40 миль в глубь пустыни, F раздает каждому по 1 галлону и возвращается назад. G, H, J преодолевают еще 40 миль, G дает каждому по 1 галлону и едет назад. H и J проезжают еще 40 миль, H отдает 1 галлон J и возвращается. Наконец, последний путешественник J проезжает еще 40 миль, располагая 9 галлонами на обратный путь. Таким образом, J достигает пункта, расположенного в 360 милях от начального. Это наибольшее расстояние, которое можно проехать по прямой при заданных условиях.

76. Уокинхолм складывает 5 рационов на 90-мильной отметке (см. рисунок) и возвращается на базу (5 дней). Затем он оставляет 1 рацион на отметке 85 миль и возвращается к отметке 90 миль (1 день). Один рацион профессор оставляет на отметке 80 миль и возвращается снова к отметке 90 миль (1 день). Переносит 1 рацион на отметку 80 миль, возвращается к отметке 85 миль, подбирает оставшийся там 1 рацион и переносит его на отметку 80 миль (1 день). «Забрасывает» 1 рацион на отметку 70 миль и возвращается к отметке 80 миль (1 день), затем возвращается на базу (1 день). Таким образом, на отметках 70 и 90 миль остается по 1 рациону. Уокинхолм переносит 1 рацион на отметку 5 миль и возвращается на базу (1 день). Если ему нужно пройти 20 миль, то он может это сделать, дойдя до отметки 10 миль и вернувшись на базу. Переносит 4 рациона на отметку 10 миль и возвращается на базу (4 дня). Оставляет 1 рацион на отметке 10 миль и возвращается к отметке 5 миль, подбирает оставленный там 1 рацион и переносит его к отметке 10 миль (1 день). Переносит 2 рациона на отметку 20 миль и возвращается к отметке 10 миль (2 дня). Переносит 1 рацион к отметке 25 миль и возвращается к отметке 20 миль (1 день). Оставляет 1 рацион на отметке 30 миль, возвращается к отметке 25 миль, забирает оставленный там 1 рацион и переносит его на отметку 30 миль (1 день). Идет к отметке 70 миль (2 дня). Идет на базу (1½ дня). Всего 23½ дня.

Предпринимались попытки уменьшить это время, но все они были основаны на трюках, так или иначе запрещенных. Например, Уокинхолма «вынуждали» оставлять не целый суточный рацион, а лишь его часть, совершать марш-бросок или съедать суточный рацион перед уходом с очередной отметки, чтобы он мог нести еще два суточных рациона и т. п. В последнем случае Уокинхолм на самом деле нес бы три рациона: один в желудке и два за плечами!

Если бы маршрут профессора пролегал по пустыне, то кратчайшее время равнялось бы 86 дням, а поступать следовало бы так.

Сложить 42 рациона в 10 милях от базы, вернуться на базу (42 дня). Отнести 1 рацион на отметку 15 миль, вернуться к первому складу в 10 милях от базы (1 день). Оставить 20 рационов в 20 милях от базы и вернуться к складу, расположенному в 10 милях от базы (20 дней). Отнести 1 рацион на расстояние 20 миль от базы и вернуться в точку, отстоящую на 15 миль от базы, взять ранее оставленный там 1 рацион и перенести его к отметке 20 миль (1 день). Перенести 10 рационов в точку, отстоящую на 30 миль от базы, и вернуться к отметке 20 миль (10 дней). Отнести 1 рацион к отметке 35 миль и вернуться к отметке 30 миль (1 день). Отнести 4 рациона на отметку 40 миль и вернуться к отметке 30 миль (4 дня). Отнести 1 рацион к отметке 40 миль и вернуться к отметке 35 миль. Взять там 1 рацион и перенести его к отметке 40 миль (1 день). Отнести 2 рациона в точку, отстоящую на 50 миль от базы, и вернуться к отметке 40 миль (2 дня). Отнести 1 рацион к отметке 55 миль и вернуться к отметке 50 миль (1 день). Перенести 1 рацион к отметке 60 миль и вернуться к отметке 55 миль. Взять там 1 рацион и перенести его на отметку 60 миль (1 день). Совершить оттуда переход до конечного пункта маршрута (2 дня). Всего — 86 дней.

77. Если человек, выйдя из A, пройдет 1⅔ км со скоростью 5 км/ч, то на это он затратит 20 мин. Обратный путь со скоростью 4 км/ч займет у приятелей 25 мин. Таким образом, человек догонит приятеля-инвалида в 12.35. Последний к тому времени проедет ⅔ км за 35 мин со скоростью 1 км/ч.

78. Предположим, что поезд идет в течение часа и имеет невероятную длину 3 км. Тогда (см. рисунок) за это время он пройдет от B до C 60 км, а пассажир переместится от A до C, или на 63 км. С другой стороны, если бы пассажир шел от паровоза в хвост поезда, то поезд успел бы пройти расстояние от B до C (снова 60 км), в то время как пассажир переместился бы лишь на расстояние от B до C, то есть на 57 км. Следовательно,в первом случае скорость пассажира относительно железнодорожного полотна составляет 63, а во втором — 57 км/ч[32].

79. Поскольку поезд идет 5 ч, разделим путь на 5 равных интервалов. Когда леди выезжает из Вюрцльтауна, 4 встречных поезда уже находятся в пути, а пятый лишь отправляется со станции. Каждый из этих 5 поездов она встретит. Когда леди проедет ⅕ пути, из Мадвилля отправится новый встречный поезд, когда она проедет ⅖ пути — еще один, ⅗ — еще один, ⅘ — еще один и, наконец, когда она прибудет в Мадвилль, оттуда как раз будет отправляться очередной, пятый, поезд. Если мы примем, как и следует сделать, что она не встречает «по пути» ни этот последний поезд, ни тот, который прибыл в Вюрцльтаун, когда ее поезд отправлялся оттуда, то по дороге из Вюрцльтауна в Мадвилль леди повстречает 9 поездов.

80. Слуга должен нести чемодан 1⅓ км и передать его джентльмену, который донесет чемодан до станции. Садовник должен нести другой чемодан 2⅔ км, а потом отдать его слуге, который и донесет чемодан до станции. Таким образом, каждый из них пронесет один чемодан 2⅔ км — иначе говоря, труд, который затратят на переноску багажа джентльмен, слуга и садовник, будет одинаковым.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Пятьсот двадцать головоломок"

Книги похожие на "Пятьсот двадцать головоломок" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Генри Дьюдени

Генри Дьюдени - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Генри Дьюдени - Пятьсот двадцать головоломок"

Отзывы читателей о книге "Пятьсот двадцать головоломок", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.