Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Описание и краткое содержание "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать бесплатно онлайн.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.
Однако нацисты не собирались скрупулезно придерживаться буквы закона. Не помогло и то, что Геттинген в целом достаточно сильно поддерживал Гитлера. Это относилось в равной мере и к обычным жителям, и к университетским студентам и профессорам. На выборах 1930 года в Геттингене за партию Гитлера было отдано вдвое больше голосов, чем в среднем по стране; и у нацистов было большинство в университетском студенческом союзе начиная уже с 1926 года. (Прекрасный дом, которым Эдмунд Ландау так гордился, в 1931 году был обезображен нарисованными на нем виселицами.) 26 апреля городская газета Gottinger Tageblott занимавшая активно пронацистскую позицию[143], напечатала объявление, что шесть университетских профессоров были отправлены в отпуск на неопределенный срок. Для самих профессоров это объявление явилось неожиданностью: их заранее не предупредили.
С апреля по ноябрь того года Геттинген как математический центр был фактически уничтожен. Это коснулось не только евреев, которые занимали должности в университете; под подозрение попадали все, кому приписывалось сочувствие к левым. Математики бежали — большинство в конце концов оказались в Соединенных Штатах. Всего из математического института в Геттингене уехали или были уволены 18 постоянных сотрудников.
Одним из неподчинившихся был Эдмунд Ландау (кстати, единственный профессор математики в Геттингене, посещавший городскую синагогу). Полагаясь на нерушимость прусских законов, Ландау попытался в ноябре 1933 года возобновить чтение лекций по дифференциальному и интегральному исчислению, но научный студенческий совет, узнав о его намерениях, организовал бойкот. Штурмовики в форме не пускали студентов Ландау в аудиторию. Демонстрируя недюжиную отвагу, Ландау потребовал от лидера совета, двадцатилетнего студента Освальда Тейхмюллера, в письменной форме объяснить причины бойкота. Тейхмюллер так и сделал, и это письмо каким-то образом уцелело.
Тейхмюллер был очень одаренным человеком и в действительности стал прекрасным математиком.[144] Из письма ясно видно, что мотивировка бойкота была идеологическая. Тейхмюллер искренне и всем сердцем верил в нацистские доктрины, включая расовую, и ему представлялось совершенно недопустимым, чтобы немецких студентов учили евреи. Мы привыкли воспринимать нацистских активистов как головорезов, люмпенов, приспособленцев и неудачников того или иного сорта, каковыми многие из них в самом деле являлись. Полезным, однако, бывает напоминание, что среди них встречались люди исключительно одаренные.[145]
Убитый горем Ландау уехал из Геттингена и отправился в Берлин, в свой семейный дом. Позже он несколько раз ездил за границу читать лекции, что, по-видимому, доставляло ему огромное удовольствие, однако он не собирался навсегда покидать родную землю и перебираться за границу; он умер своей смертью в Берлине в 1938 году.
Гильберт же умер в Геттингене во время войны — 14 февраля 1943 года, за три недели до своего 81-летия, вследствие осложнений после падения на улице. Не более десятка людей собрались на прощальной службе. Лишь двое из них могли похвастаться значительными математическими достижениями: физик Арнольд Зоммерфельд, бывший старым другом Гильберта, и вышеупомянутый Густав Херглотц. Родной город Гильберта Кенигсберг сровняли с землей во время войны; теперь это российский город Калининград. Геттинген в настоящее время представляет собой обычный провинциальный немецкий университет с сильным математическим факультетом.
III.
Те годы — начало 1930-х, перед тем как сгустился мрак, — подарили нам один из самых романтических эпизодов в истории Гипотезы Римана — открытие формулы Римана-Зигеля.
Карл Людвиг Зигель, сын берлинского почтальона, преподавал во Франкфуртском университете. Состоявшийся ученый, специалист по теории чисел, он прекрасно понимал (как это должен был понимать и любой читавший ее математик), что статья Римана 1859 года представляла собой, в терминологии Эрвинга Гоффмана, с которым мы встречались в главе 4.ii, всего лишь фасад намного более масштабной конструкции, сжатое изложение для публикации гораздо большей по объему работы, проходившей, по-видимому, «за сценой». Поэтому он постарался выкроить как можно больше времени, чтобы провести его в Геттингене, просматривая относящиеся к тому периоду личные математические записи Римана и надеясь найти какие-нибудь зацепки, указывающие на ход мыслей Римана во время его работы над той статьей.
Зигель был вовсе не первым, предпринявшим такую попытку. В 1895 году Генрих Вебер закончил работу над вторым изданием «Собрания трудов» Римана, после чего отдал его бумаги на хранение в университетскую библиотеку. Когда там появился Зигель, бумаги пролежали среди архивов в Геттингене (где они находятся и по сей день, см. главу 22.i) уже 30 лет. Разные исследователи неоднократно предпринимали попытки изучить эти записи, но все в конце концов отступали перед фрагментарным и неорганизованным стилем черновиков Римана, или же, вполне вероятно, им просто не хватало математической квалификации для понимания этих записей.
Зигель был сделан из более крутого теста. Он не отступил и продолжал изучать толстые кипы небрежно исписанных листков и в результате сделал потрясающее открытие, которое и опубликовал в 1932 году в статье под названием «О Nachlass[146] Римана, относящихся к аналитической теории чисел». Это одна из ключевых работ в истории Гипотезы Римана. Чтобы объяснить суть сделанного Зигелем открытия, нам надо вернуться к вычислительной линии повествования — другими словами, к попыткам реально вычислить нули дзета-функции и проверить Гипотезу Римана экспериментально.
IV.
В нашем рассказе о вычислительном направлении в главе 12 мы остановились на Йоргене Граме, который в 1903 году опубликовал результаты вычисления 15 первых нетривиальных нулей. Работа в этом направлении не прекращается по сей день. В 1996 году на конференции по Гипотезе Римана в Сиэтле Эндрю Одлыжко представил историю вопроса, которая показана в таблице 16.1.
Исследователь(и) Дата опубликования Число нулей с вещественной частью 1/2 Й. Грам 1903 15 Р.Дж. Бэклунд 1914 79 Дж. И. Хатчинсон 1925 138 Э.Ч. Титчмарш и др. 1935-1936 1041 А.М. Тьюринг 1953 1054 Д.Х. Лемер 1956 25 000 Н.А. Меллер 1958 35 337 Р.Ш. Леман 1966 250 000 Дж. Б. Россер и др. 1969 3 500 000 Р.П. Бренти др. 1979 81 000 001 X. те Риле, Я. ван де Луне и др. 1986 1 500 000 001Таблица 16.1. Вычисление нулей дзета-функции.
В конце 2000 года ван де Луне довел вычисления до 5 миллиардов нулей дзета-функции Римана, а в октябре 2001 года — до 10 миллиардов. Тем временем в августе 2001 года Себастьян Веденивски, использовав свободные процессорные мощности на 550 офисных персональных компьютерах корпорации IBM в Германии, инициировал проект по дальнейшему развитию этих вычислений. Последний опубликованный результат Веденивски датируется 1 августа 2002 года; число нетривиальных нулей с вещественной частью одна вторая доведено до 100 миллиардов.
Здесь на самом деле происходит несколько вещей сразу, и важно четко их разделять.
Во-первых, не следует смешивать а) высоту вдоль критической прямой и б) число нулей. «Высота» означает просто мнимую часть комплексного числа: высота числа 3 + 7i равна 7. При рассмотрении нулей дзета-функции принято обозначать высоту буквой t или T. (Поскольку мы знаем, что нули симметричны относительно вещественной оси, мы интересуемся только положительными t). Имеется формула для числа нулей вплоть до высоты T:
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Книги похожие на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Отзывы читателей о книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.", комментарии и мнения людей о произведении.