» » » » Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.


Авторские права

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь можно скачать бесплатно "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Астрель: CORPUS, год 2010. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Рейтинг:
Название:
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Издательство:
Астрель: CORPUS
Год:
2010
ISBN:
978-5-271-25422-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Описание и краткое содержание "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать бесплатно онлайн.



Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.






Одним из признаний этого факта стало устройство периодических международных конгрессов математиков. Первое такое собрание состоялось в Цюрихе в августе 1897 года. Жена Адамара как раз ожидала первого ребенка, а потому Адамар там не присутствовал. Он направил свою работу, с тем чтобы ее прочитал его друг Эмиль Пикар. (Интересно заметить, что как раз в то время в 40 милях от Базеля происходил первый Сионистский конгресс, вызванный, по крайней мере отчасти, делом Дрейфуса.)

2-й конгресс математиков прошел в Париже летом 1900 года, и намерение состояло в том, чтобы проводить конгресс каждые четыре года. Однако у Истории имелись собственные планы. Конгресс не проводился в 1916-м, равно как и в 1940, 1944 и 1948 годах. Система их проведения возродилась с 1950 года, когда конгресс состоялся в Кембридже, штат Массачусетс. Адамар, конечно, получил приглашение, но из-за его просоветских склонностей ему сначала отказали в визе для въезда в США. Потребовалось ходатайство коллег-математиков и личное вмешательство Трумэна чтобы обеспечить его приезд в Гарвард. (Во время написания этой книги, в начале 2002 года, идут приготовления к 24-му конгрессу этим летом в Пекине — всего лишь второму конгрессу, проводимому за пределами Европы, России и Северной Америки.[91])


VIII.

Первый математический конгресс XX века состоялся в Париже с 6 по 12 августа 1900 года, и это был один из тех конгрессов, о которых все помнят. Парижский конгресс навсегда останется связан с именем Давида Гильберта — немецкого математика, работавшего в Геттингене — университете Гаусса, Дирихле и Римана. Хотя ему было всего 38 лет, Гильберт уже имел репутацию одного из выдающихся математиков своего времени.

Утром 8 августа в актовом зале Сорбонны Гильберт выступал с докладом о «Математических проблемах» перед примерно двумястами делегатами конгресса, среди которых был и Жак Адамар. Цель Гильберта состояла в том, чтобы обратить мысли коллег-математиков к главным проблемам, которые ставило перед ними новое столетие. Ради этой цели он предложил их вниманию несколько наиболее важных тем, требующих исследования, и задач, требующих решения. Он собрал эти темы и задачи в 23 пункта, восьмым из которых значилась Гипотеза Римана.

С этой речи математика XX века началась всерьез.

Часть вторая

Гипотеза Римана

Глава 11. Обитатели матрешек

I.

В главе 9.vi мы познакомились с некоторыми нулями дзета-функции. Мы видели, что каждое четное отрицательное целое число является нулем дзета-функции: ζ(−2) = 0, ζ(−4) = 0, ζ(−6) = 0 и т.д. Это несколько продвигает нас в понимании Гипотезы Римана, которая, как мы помним, звучит так:

Гипотеза Римана

Все нетривиальные нули дзета-функции имеют вещественную часть, равную одной второй.

К сожалению, все эти отрицательные четные числа — тривиальные нули. Ну… а где же нетривиальные? Чтобы ответить на этот вопрос, нам надо отправиться в царство комплексных и мнимых чисел.

Эта тема многих напрягает. Они полагают, что мнимые числа это просто страшилки или же что-то надуманное, чего не может быть, но что просочилось в математику откуда-то из области научной фантастики. Все это чепуха. Комплексные числа (частным случаем которых являются мнимые) появились в математике из весьма практических соображений. Они приносили математикам пользу при решении задач, которые без этих чисел не решались. Они не более «мнимые», чем числа любого другого вида. Когда это в последний раз вы спотыкались о семерку?

Иррациональные числа (такие как √2 и π) на самом деле более таинственны, более страшат наш разум и пугают даже сильнее, чем квадратный корень из минус единицы. Действительно, иррациональные числа принесли (и в обличье так называемой континуум-гипотезы продолжают приносить, см. речь Давида Гильберта в главе 12.ii) философам математики куда больше хлопот, чем когда бы то ни было принес безобидный малыш √−1. Предпринимались целенаправленные попытки отказаться от иррациональных чисел, причем даже в наше время и даже со стороны видных профессиональных математиков: Кронеккера в XIX столетии, Брауэра и Г. Вейля в начале XX. По поводу некоторых дополнительных замечаний на эту тему см. раздел V в этой главе.


II.

Чтобы получить сбалансированное представление о комплексных числах, неплохо бы понять, как вообще современные математики воспринимают числа. Это мы сейчас и рассмотрим, включив в наш рассказ заодно и комплексные числа. Не нервничайте пока слишком сильно по поводу того, что же они собой представляют: подробности последуют очень скоро, а в несколько следующих абзацев комплексные числа включены просто для полноты.

Итак, как же современный математик воспринимает числа? В виде ажурных букв, вот как! В виде букв N, Z, Q, R и C.{1} Я пытался придумать какое-нибудь идиотское, а потому застревающее в памяти мнемоническое правило для их запоминания, но не смог изобрести ничего, кроме Nine Zulu Queens Ruled China.[92]

А может, я и поспешил немного. Вот альтернативный ответ на тот же вопрос: математики воспринимают числа как набор сидящих одна в другой матрешек. Вот таких.

• Самая внутренняя матрешка: натуральные числа 1, 2, 3, 4, 5, ….

• Следующая матрешка: все целые числа. Другими словами, натуральные числа вместе с нулем и отрицательными целыми (такими как −12).

• Следующая матрешка: рациональные числа. Другими словами, все целые вместе с положительными и отрицательными дробями (например, числа 3/2, −1/917 635, 1000 000 000 001/6).

• Следующая матрешка: вещественные числа. Другими словами, рациональные вместе с иррациональными, такими как √2, π, e. (Из примечания [18] в главе 3.vi мы помним, что древние греки открыли существование чисел, которые не являются ни целыми, ни дробями, — иррациональных чисел.)

• Внешняя матрешка: комплексные числа.

Уместно сделать несколько замечаний по поводу такой организации. Во-первых, числа из каждой матрешки записываются характерным для каждой из них способом.

• Натуральные числа обычно записываются так: 257.

• Целые могут иметь перед собой знак, например −34.

• Рациональные числа чаще всего записываются в виде дробей. В том, что касается записи в виде дроби, рациональные числа бывают двух видов. Те, величина которых (без учета знака) меньше единицы, называются «правильными дробями», а все остальные — «неправильными». Правильная дробь записывается таким образом: 14/37. Неправильную дробь можно записать двумя способами: как собственно неправильную дробь 13/9 или же в «смешанном» виде (с выделенной целой частью) 14/9.

• Наиболее важным вещественным числам присвоены специальные обозначения, такие как π и e. Многие другие можно выразить «в замкнутом виде», подобно  или π2/6. Когда больше ничего нельзя сделать или же просто для того чтобы оценить реальное численное значение вещественного числа, его записывают в виде десятичной дроби, как правило, с многоточием в конце, которое означает: «Это не все! если надо, можно добавить сюда еще десятичные разряды», например −549,5393169816448223…. Их можно округлять, скажем, до «пяти знаков после запятой» −549,53932, или до «пяти значащих цифр» −549,54, или с любой другой точностью.

• Комплексные числа выглядят так: −13,052 + 2,477i. О них мы еще поговорим.

Следующее, что нужно заметить, — это что обитатели каждой матрешки являются привилегированными гражданами следующей (внешней) и при желании могут быть записаны в стиле, принятом для этой внешней матрешки:

• Натуральные числа (скажем, 257) — это привилегированные целые числа, и их можно записать, поставив перед ними знак плюс, как +257. При виде целого числа со знаком плюс перед ним мы думаем: «Натуральное!»

• Целые (скажем, −27) — это привилегированные рациональные числа, и их можно записать в виде дроби, знаменатель которой равен 1, как −27/1. При виде рационального числа со знаменателем 1 мы думаем: «Целое!»

• Рациональные числа (скажем, 1/3) — это привилегированные вещественные числа, и их можно записать в виде десятичных дробей, как 0,33333333…. Насчет рациональных чисел интересен тот факт, что при записи рационального числа в виде десятичной дроби знаки после запятой рано или поздно обязательно начнут повторяться (если только они вообще не исчерпаются, как, скажем, в числе 7/8 = 0,875). Рациональное число 65 463/27 100, например, в виде десятичной дроби выглядит следующим образом:

2,4156088560885608856088….

Все рациональные числа демонстрируют такие повторы, но ни одно из иррациональных ничего подобного не делает. Другими словами, иррациональное число не может проявлять никакого порядка в последовательности своих знаков после запятой. Число


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Книги похожие на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Джон Дербишир

Джон Дербишир - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Отзывы читателей о книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.