» » » » Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.


Авторские права

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь можно скачать бесплатно "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Астрель: CORPUS, год 2010. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Рейтинг:
Название:
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Издательство:
Астрель: CORPUS
Год:
2010
ISBN:
978-5-271-25422-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Описание и краткое содержание "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать бесплатно онлайн.



Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.






Сходится ли она вообще когда-нибудь? Без сомнения. Если x равно 1/2,то сумма представляет собой просто-напросто выражение 1.1 из главы 1.iv, поскольку (1/2)2 = 1/4, (1/2)3 = 1/8 и т.д. Следовательно, S(1/2) = 2, потому что именно к этому значению ряд и сходится. Более того, если вспомнить правило знаков, то (−1/2)2 = 1/4, (−1/2)3 = −1/8 и т.д., а следовательно, S(−1/2) = 2/3 согласно выражению 1.2 из главы 1.v. Аналогичным образом выражение 1.3 говорит нам, что S(1/3) = 11/2 выражение 1.4 — что S(−1/3) = 13/4. Легко получить и еще одно значение для этой функции: S(0) = 1, поскольку нуль в квадрате, кубе и т.д. все равно равен нулю, и остается только единица, с которой ряд начинается.

Однако если x равен 1, то S(1) есть 1 + 1 + 1 + 1 + …, а этот ряд расходится. При x равном 2 расходимость еще более явная: 1 + 2 + 4 + 8 + 16 + …. Когда x равен −1, происходит странная вещь: по правилу знаков сумма принимает вид 1 − 1 + 1 − 1 + 1 − 1 + …. Такая сумма равна нулю, если взять четное число членов, и единице, если нечетное. Данное выражение определенно не убегает на бесконечность, но оно и не сходится. Математики рассматривают такое поведение как некоторый вид расходимости. Ситуация с x = −2 еще хуже: сумма 1 − 2 + 4 − 8 + 16 − … ведет себя так, словно убегает на бесконечность сразу по двум направлениям. Такая ситуация определенно далека от сходимости, и если вы скажете, что здесь налицо расходимость, то никто с вами спорить не будет.

Короче говоря, функция S(x) имеет значения, только когда x лежит в границах между −1 и 1, не включая сами границы. В других случаях у нее значений нет. В таблице 9.1 приведены значения функции S(x) для аргументов x между −1 и 1.

x S(x) −1 или меньше (нет значений) −0,5 0,6666… −0,333… 0,75 0 1 0,333… 1,5 0,5 2 1 или больше (нет значений)

Таблица 9.1. Значения функции S(x) = 1 + x + x2 + x3 + ….

Вот и все, что можно извлечь из бесконечной суммы. График этой функции показан на рисунке 9.1; на этом графике у функции нет вообще никаких значений к западу от −1 и к востоку от 1. Используя профессиональную терминологию, можно сказать, что область определения этой функции заключена строго между −1 и 1.

Рисунок 9.1. Функция S(x) = 1 + x + x2 + x3 + ….


III.

Но смотрите, нашу сумму

S(x) = 1 + x + x2 + x3 + x4 + x5 + …

можно переписать в таком виде:

S(x) = 1 + x(1 + x + x2 + x3 + x4 + …).

Ряд в скобках здесь равен просто S(x): каждый член, встречающийся в одном, встречается также и в другом из двух выписанных выше рядов, а это и означает, что они совпадают.

Другими словами, S(x) = 1 + xS(x). Перенося самый правый член в левую часть, получаем равенство S(x) − xS(x) = 1, или, другими словами, (1 − x)S(x) = 1. Следовательно, S(x) = 1/(1 − x). Возможно ли, чтобы за нашей бесконечной суммой скрывалась столь простая функция, как 1/(1 − x)? Может ли равенство

1/(1 − x) = 1 + x + x2 + x3 + x4 + x5 + x6 + … (9.2)

оказаться верным?

Без сомнения, может. Если, например, x = 1/2, то 1/(1 − x) равняется 1/(1 − 1/2), что есть 2. Если x = 0, то 1/(1 − x) равно 1/(1 − 0), что есть 1. Если x = −1/2, то 1/(1 − x) равняется 1/(1 − (−1/2)), т.е. 1:11/2 что есть 2/3. Если x = 1/3, то 1/(1 − x) равняется 1/(1 − 1/3) т.е. 1:2/3, что есть 11/2. Если x = −1/3, то 1/(1 − x) равняется 1/(1 − (−1/3)), т.е. 1:11/3, что есть 3/4. Все сходится. Для аргументов −1/2, −1/3, 0, 1/3, 1/2, при которых мы знаем значения функции, значения бесконечного ряда S(x) такие же, как и значения функции 1/(1 − x). Похоже, что этот ряд и эта функция — одно и то же.

Рисунок 9.2. Функция 1/(1 − x).

Но они не одно и то же, поскольку у них различные области определения, как это видно из рисунков 9.1 и 9.2. S(x) имеет значения только между −1 и 1, не включая границы; функция же 1/(1 − x) имеет значения везде, за исключением точки x = 1. Если x = 2, то ее значение равно 1/(1 − 2), то есть −1. Если x = 10, то значение равно 1/(1 − 10), то есть −1/9. Если x = −2, то значение равно 1/(1 − (−2)), то есть 1/3. Можно нарисовать график функции 1/(1 − x). Как видно, он совпадает с предыдущим графиком в промежутке между −1 и 1, но имеет еще и значения к западу от −1 (включая саму −1) и к востоку от 1.

Мораль здесь в том, что бесконечный ряд может определять только часть функции; или, используя подобающие математические термины, бесконечный ряд может определять функцию только на части ее области определения. Остальная часть функции может где-то прятаться, ожидая, пока ее не вытащат на свет с помощью фокуса типа того, что мы применили к S(x).


IV.

Это приводит к очевидному вопросу: а не обстоит ли дело подобным же образом и с дзета-функцией? Не случилось ли так, что бесконечная сумма, которую мы использовали для дзета-функции, — выражение (9.1) — описывает только часть этой функции? И у этой функции есть что-то еще, что нам только предстоит открыть? Может ли область определения дзета-функции

оказаться больше, чем просто «все числа, большие 1»?

Конечно может. Иначе зачем бы мы тут стали влезать во все эти подробности? Да, дзета-функция имеет значения при аргументах, меньших 1. На самом деле, как и функция 1/(1 − x), она имеет значения при всех числах за единственным исключением x = 1.

Сейчас подходящий момент, чтобы привести график дзета-функции, который продемонстрировал бы все ее свойства в широком интервале значений. К сожалению, это невозможно. Как уже упоминалось, кроме как для простейших функций, обычно нет хорошего и надежного способа показать функцию во всем ее великолепии. Близкое знакомство с функцией требует времени, терпения и тщательного изучения. Можно, однако, изобразить дзета-функцию по кускам. На рисунках с 9.3 по 9.10 показаны значения ζ(s) для некоторых аргументов, находящихся слева от s = 1, хотя для этого потребовалось выбрать свой собственный масштаб на каждом графике. Понять, где мы находимся, можно, руководствуясь подписанными аргументами (на горизонтальной оси) и значениями (на вертикальной оси). При обозначении масштаба m указывает на миллион, tr на триллион, mtr обозначает миллион триллионов, a btr — миллиард триллионов.

Коротко говоря, когда s лишь немного меньше единицы (рисунок 9.3), значения функции очень большие по величине и отрицательные — как если бы при движении на запад при пересечении линии s = 1 значения внезапно переметнулись из бесконечности в минус бесконечность. Если продолжить путешествие по рисунку 9.3 — т.е. устремлять s ближе и ближе к нулю, — то подъем вверх радикально замедляется. Когда s равно нулю, ζ(s) равна −1/2. При s = −2 кривая пересекает ось s, т.е. ζ(s) равна нулю.

Рисунок 9.3.

Затем (мы по-прежнему двигаемся на запад, добравшись теперь до рисунка 9.4) график взбирается на относительно скромную высоту (в действительности до 0,009159890…), а после этого поворачивает вниз и снова пересекает ось при s = −4. График попадает в неглубокую впадину (−0,003986441…), а после нее снова взбирается вверх и пересекает ось при s = −6. Еще один невысокий пик (0,004194…), спуск до пересечения с осью при = −8 и далее в несколько более глубокую впадину (−0,007850880…), затем пересечение с осью в точке −10, после чего уже довольно заметный пик (0,022730748…), пересечение с осью при s = −12, впадина поглубже (−0,093717308…), пересечение с осью при s = −14 и т.д.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Книги похожие на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Джон Дербишир

Джон Дербишир - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Отзывы читателей о книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.