» » » » Дэвид Боданис - E=mc2. Биография самого знаменитого уравнения мира


Авторские права

Дэвид Боданис - E=mc2. Биография самого знаменитого уравнения мира

Здесь можно скачать бесплатно "Дэвид Боданис - E=mc2. Биография самого знаменитого уравнения мира" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство КоЛибри, год 2009. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Дэвид Боданис - E=mc2. Биография самого знаменитого уравнения мира
Рейтинг:
Название:
E=mc2. Биография самого знаменитого уравнения мира
Издательство:
КоЛибри
Год:
2009
ISBN:
978-5-389-00499-3
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "E=mc2. Биография самого знаменитого уравнения мира"

Описание и краткое содержание "E=mc2. Биография самого знаменитого уравнения мира" читать бесплатно онлайн.



В 1905 году, выведя свое знаменитое уравнение Е=mc2, Альберт Эйнштейн подарил миру мощный источник энергии и открыл новые пути к познанию Вселенной. И теперь, более ста лет спустя, блестящий популяризатор науки Дэвид Боданис увлекательно и просто рассказывает об этом великом открытии. Герои его захватывающей, как детектив, книги — выдающиеся физики, среди которых Фарадей, Резерфорд, Ферми, Оппенгеймер, Гейзенберг и конечно же гениальный Эйнштейн.






Здесь, на Земле наполняющие атмосферу атомы водорода просто пролетают один мимо другого. Даже если их придавливает обрушившаяся гора, они друг к другу не прилипают. Однако, оказавшись вблизи центра Солнца, испытывая давление слоя вещества высотой в тысячи миль, ядра водорода могут притискиваться так близко одно к другому, что, в конце концов, они соединяются, образуя химический элемент, именуемый гелием.

Если бы происходило только это, ничего особо важного тут не было бы. Но Бете и другие исследователи показали, что каждый раз, как четыре ядра водорода прижимаются друг к другу, срабатывает могучая субатомная арифметика, подобная той, которую как-то под вечер, среди снегов Швеции, разработали Майтнер и ее племянник Фриш. Массу четырех ядер водорода можно записать как 1+1+1+1. Однако, когда они соединяются, образуя гелий, суммарная масса оказывается не равной 4! Тщательно измерьте массу ядра гелия, и вы увидите, что она на 0,7 процента меньше, то есть составляет 3,993 единиц массы четырех ядер водорода. Утраченные 0,7 процента обращаются в ревущую энергию.

Такая величина кажется незначительной, но ведь Солнце во много тысяч раз больше Земли и содержит колоссальное количество доступного в качестве топлива водорода. Взорванная над Японией бомба разрушила целый город, обратив в энергию всего лишь несколько унций урана. Причина мощи Солнца состоит в том, что оно каждую секунду перекачивает 4 миллиона тонн водорода, обращая его в чистую энергию. «Взрывы», происходящие на нашем Солнце, можно ясно наблюдать со звезды альфа Центавра, отделенной от нас 24 триллионами миль, — как и с недоступных воображению планет, которые обращаются вокруг звезд, разбросанных по спиральной ветви нашей галактики.

Солнце перекачивало массу в энергию вчера, — в тот момент, когда вы только-только проснулись, 4 миллиона тонн водорода «продавливались» сквозь знак равенства, стоящий в уравнении, которое Эйнштейн записал в 1905 году, со стороны массы на сторону энергии, умножаясь попутно на огромную величину c2, — оно проделывало тоже самое на заре, разгоравшейся над Парижем пять столетий назад, и в тот день, когда Магомет обрел пристанище в Медине, и когда в Китае утвердилась династия Хань. Энергия, полученная из миллионов исчезающих тонн, каждую секунду с ревом проносилась над головами динозавров — сама Земля пестовалась, согревалась и ограждалась этим яростным пламенем столько времени, сколько она провела на своей орбите.

Глава 15. Сотворение Земли

Работа Сесилии Пэйн помогла показать, что наше Солнце и прочие звезды небесные суть огромные насосные станции, чья работа основана на принципе E=mc2. Однако само по себе пережигание водорода в гелий способно было с легкостью привести к возникновению серой, мертвой вселенной. На ранних этапах ее истории состоящие из водорода звезды могли ярко пылать, создавая гелий. Однако с ходом времени изначальный водород должен был попросту выгореть, а тепло и свет, создававшиеся в соответствии с E=mc2, постепенно угасли бы, оставив после себя лишь гигантские летающие кучи пепла — использованного гелия. И ничто иное возникнуть не смогло бы.

Для создания вселенной, какой мы ее знаем, должно было существовать некое устройство, способное вырабатывать углерод, кислород, кремний и все остальные химические элементы, из которых состоят планеты и от которых зависит существование жизни. Атомы этих элементов крупнее и сложнее того, что могла создать простая машина пережигания водорода в гелий.

Пэйн была женщиной достаточно независимой, чтобы бросить вызов всеобщей уверенности в том, что звезды состоят из железа, и это позволило сделать первый шаг к пониманию вселенной: показать, что в звездах, находящихся далеко за пределами нашей атмосферы, достаточно водорода, обеспечивающего постоянный выброс энергии в согласии с формулой «1+1+1+1 = не совсем 4», формулой, которая, собственно, и поддерживает сгорание звезд. Однако на возникновении гелия все и остановилось. Кому хватило бы дерзости и независимости, чтобы пойти дальше, показать, что формула E=mc2 способна создавать обычные элементы, из которых состоит наша планета и на которой построена наша повседневная жизнь?

В 1923 году, когда Пэйн только-только появилась в Гарварде, семилетний йоркширский мальчуган был уличен школьным инспектором в том, что он прогулял бóльшую часть прошедшего учебного года, посещая вместо занятий местный кинотеатр. И хотя юный Фред Хойл убедительно доказал, что хождение в кино пошло ему только на пользу, — следя за титрами, он научился читать, — он был вынужден против собственной воли вернуться в школу. Вот этому мальчугану и предстояло, в конечном счете, сделать следующий крупный шаг в объяснении того, как устроено Солнце.

Примерно через год после возвращения Хойла в школу его класс отправили собирать полевые цветы. Затем, уже в школе, учитель зачитал список собранных цветов и описал один из них как имеющий пять лепестков. Как раз этот цветок Хойл и держал в руке. И лепестков у него было шесть. Странно. Ладно бы меньше пяти, это было бы понятно — какие-то из лепестков могли оторваться, пока он нес цветок в школу. Но больше? Он ломал голову над этой загадкой и почти не слышал скрипучего голоса учителя, а затем: «Я получил удар открытой ладонью по уху, — писал он годы спустя, — …удар, от которого в дальнейшем оглох. Поскольку я его не ожидал, то и не имел возможности отпрянуть хотя бы на дюйм, уменьшив скачок давления, обрушившегося на мою барабанную перепонку и среднее ухо».

Хойлу потребовалось несколько минут, чтобы прийти в себя, но после этого он ушел из школы, а дома рассказал о случившемся матери. «Я сказал, что школа получила от меня три года испытательного срока, и если человек не способен за три года понять, что в какой-то вещи нет ничего хорошего, тогда что он способен понять вообще?»

Мать полностью с ним согласилась — как и отец, проведший пулеметчиком два года на Западном фронте и выживший благодаря тому, что не выполнял приказы не отличавшихся большим умом офицеров, происходивших из высших слоев общества — офицеры эти требовали, чтобы пулеметы пристреливались с десятиминутными интервалами (что, разумеется, позволило бы немцам устанавливать точное расположение огневых точек). Фред Хойл получил еще один год передышки. «Каждое утро я, позавтракав, выходил из дома, — якобы направляясь в школу. Однако направлялся я на заводы и в мастерские Бингли. На фабриках лязгали и грохотали ткацкие станки. В мастерских работали кузнецы и плотники… И все они с явным удовольствием отвечали на любые мои вопросы».

В конце концов, он отправился по железной дороге в другую школу, где отличавшиеся большей добротой учителя разглядели в Хойле одаренного мальчика и помогли ему получить стипендию. Кончилось тем, что Хойл поступил в Кембриджский университет, где специализировался по математике и астрофизике и делал в этом такие успехи, что до крайности нелюдимый Поль Дирак взял его в ученики, — событие до той поры невиданное, — а прежний руководитель Пэйн, Эддингтон, приглашал на чаепития, — впрочем, поскольку поговаривали, что в Гарварде Пэйн «осрамилась» (в смысле интеллектуальном), имя ее почти не упоминалось. (История уже была переписана: Генри Норрис Расселл и прочие давали теперь понять, что они «всегда» знали, как много на Солнце водорода.)

А вот решение вопроса о том, каким образом звездам удается использовать гелий в качестве последующего топлива для колоссальной машины E=mc2, так и застряло на месте, — том, на котором его оставили в 1920-х Пэйн и ее прямые последователи. Существующей в центре нашего Солнца температуры в 10 и более миллионов градусов едва-едва хватало на то, чтобы слеплять вместе четыре положительно заряженных ядра водорода, отчего возникал гелий. Но для того, чтобы склеивать в процессе горения ядра гелия и создавать таким образом элементы более крупные, необходимы температуры намного более высокие. Между тем, вселенная была уже изучена достаточно подробно и таковых в ней не наблюдалось.

И где же тогда следовало искать температуры, превышающие те, что развиваются в центре звезды?

Вот тут и пригодилось обыкновение Хойла складывать факты по-своему. В начале Второй мировой войны его включили в состав группы, занимавшейся исследованиями и разработкой радаров, а в декабре 1944-го он попал в Соединенные Штаты на посвященное обмену информацией совещание, и в конечном итоге оказался в Монреале, где дожидался одного из редких в те времена авиарейсов, который позволил бы ему вернуться через Атлантику домой.

Он бродил по городу и его окрестностям, собирая попутно сведения о работавшей в Чалк-Ривер (примерно в 100 милях от Оттавы) британской исследовательской группе. Официально никто ему о «Манхэттенском проекте» не сообщал, однако имена, которые услышал здесь Хойл, — а некоторые из них принадлежали людям, с чьими работами он познакомился еще в довоенном Кембридже, — постепенно позволили ему уяснить основные этапы развития сверхсекретного проекта, в то время еще осуществлявшегося в Лос-Аламосе.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "E=mc2. Биография самого знаменитого уравнения мира"

Книги похожие на "E=mc2. Биография самого знаменитого уравнения мира" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Дэвид Боданис

Дэвид Боданис - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Дэвид Боданис - E=mc2. Биография самого знаменитого уравнения мира"

Отзывы читателей о книге "E=mc2. Биография самого знаменитого уравнения мира", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.