Джозеф Фаррелл - Боевая машина Гизы

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Боевая машина Гизы"
Описание и краткое содержание "Боевая машина Гизы" читать бесплатно онлайн.
В новой книге известный физик и инженер Джозеф Фаррелл развивает свою сенсационную теорию о том, что египетские пирамиды были частью грандиозного военного эксперимента по созданию лучевого оружия невообразимой разрушительной силы. На сей раз автор выстраивает еще более неожиданную гипотезу, что гигантский лазер — архитектурный комплекс на плато Гиза — не только был применен в древности, но и привел к катастрофическим последствиям для Солнечной системы. Более того, использованные при построении боевой машины Гизы принципы палеофизики, которые подробно изучали нацистские ученые, способны и сегодня привести к созданию невероятного по мощности оружия, способного уничтожить целую планету. Возможно, экспериментальные образцы такого оружия уже созданы и были испытаны в боевых условиях в конце прошлого века.
Вспомним, однако, что кватернионный анализ говорит нам нечто иное: каждый вектор сопровождается скаляром, чистой магнитудой не имеющей направления силы. Таким образом, с точки зрения кватернионной модели бесконечное море пустоты содержит бесконечный потенциал информации поля, которая может быть источником неудобных бесконечностей в квантовой механике (вспомните вычислительный прием перенормировки).
Теперь несколько расширим наш мысленный эксперимент.
Представим, что наш Наблюдатель ударяет по одной из этих частиц. При этом простирающаяся в бесконечность пространственная и временная пустота мгновенно приобретет некие свойства, поскольку движение этой частицы начнет отличаться от движения остальных. В результате появятся сами пространство и время, поскольку теперь их можно измерить, сравнивая движение частицы, получившей удар, с движением остальных частиц. В сущности, здесь мы имеем физическую модель сотворения из ничего.
Но как нашему Наблюдателю удается это сделать? Квантовая механика дает следующий ответ: просто путем наблюдения или представления. Другими словами, пытаясь увидеть разницу между частицами, Наблюдатель создает эту разницу.
Обратите внимание, что здесь разрешается древний парадокс, потому что в первоначальном, неразличимом состоянии абсолютного равновесия самого бесконечного моря вращающихся частиц время и пространство, будучи безразмерными, также простираются в бесконечность, но после удара начинают существовать как поддающиеся измерению, реальные сущности. Следует отметить, что каждая частица в этом море также начинает существовать как поддающаяся измерению реальная сущность. С этой точки зрения все три стандартные космологические теории — циклическая Вселенная, стабильная Вселенная и теория «большого взрыва» — в определенной степени верны.
2. Первое тело Платона: тетраэдр, вписанный в сферу
После того, как частица подвергается удару, возникает вероятность того, что она в конечном итоге столкнется с другой частицей, передав удар ей, и так далее. В результате этой серии столкновений сложность системы увеличивается, и вся система начинает генерировать по мере того, как проявляется бесконечный потенциал информации поля
Но что общего у этих вращающихся и сталкивающихся частиц, несмотря на небольшую разницу во вращении и т. п.? Попробуем еще немного расширить наш мысленный эксперимент.
Если взять сферу любого радиуса, то простейшая объемная фигура, которую можно вписать в данную сферу, — это тетраэдр. Если мы поместим тетраэдр внутрь сферы, которая вращается вокруг своей оси, и совместим одну из вершин тетраэдра с осью, то три остальные вершины коснутся поверхности сферы в точках 19,5» северной или южной широты, в зависимости от того, на какой полюс будет ориентирован тетраэдр.
Прежде чем продолжить рассмотрение несложной геометрии, необходимо обратиться к математическому анализу размеров марсианской пирамиды D и М, выполненному Эролом Торраном. Работа Торрана стала катализатором процесса математического анализа структур Сидонии, в результате которого появилось предположение Хогланда о тетраэдрической физике и об искусственном происхождении этих структур, на что указывал анализ Торрана.
Отбросив очевидный, но далекий от науки критерий «если это выглядит как пирамида, значит, это пирамида», Торран разработал совокупность четырех критериев для исследования пирамиды D и М:
1. Отличается ли геометрия объекта от известного рельефа и геоморфных процессов? (То есть присутствуют ли в объекте прямые линии, закругления с постоянным радиусом, повторяющиеся узоры, одна или несколько осей симметрии, и исключает ли сочетание этих характеристик геоморфологию в качестве механизма их происхождения?)
2. Ориентирован ли объект на главные направления и/или значимые астрономические события?
3. Соседствует ли объект с другими объектами, которые также отличаются от окружающих геологических образований? И если да, то не связаны ли они геометрически?
4. Отражает ли геометрия объекта фундаментальные математические величины и/или симметрию, ассоциирующуюся с архитектурой?[332]
Торран также отмечает, что сами по себе эти критерии недостаточны для доказательства искусственного происхождения, но при рассмотрении всей совокупности свидетельств они позволяют исключить естественное происхождение объектов. «Это в точности та же самая, — пишет он, — методика «схождения свидетельств», которая используется при интерпретации аэрофотосъемки и снимков со спутников»[333].
Строго придерживаясь «самого консервативного из возможных подходов», поскольку математические соотношения Великой пирамиды были небрежно использованы «в большинстве своем исполненными благих намерений исследователями» в попытке доказать «различные теории», Торран также подчеркивает, что он предпочел сосредоточиться на простейших математических соотношениях:
1. Величинах наблюдаемых углов, выраженных в радианах.
2. Соотношениях между наблюдаемыми углами с точки зрения равенства математическим константам.
3. Синусах, косинусах и тангенсах измеряемых углов с точки зрения равенства математическим константам[334].
Проекция пирамиды с пятью гранями имеет следующий вид:
Торран отмечает, что марсианская пирамида D и М обнаруживает «сложное переплетение пятилучевой и шестилучевой симметрии», поскольку в ней «обе симметрии присутствуют одновременно», и этот прием «широко применялся архитекторами древности», которые полагали, что «геометрия и определенные математические соотношения являются ключевыми элементами Космоса»[335]. Приведенные ниже рисунки иллюстрируют эту совмещенную пятилучевую и шестилучевую симметрию:
Тот факт, что углы внутри пирамиды D и М не равны, означает возможность построения соотношений, отражающих «значимые величины с преобладанием квадратных корней и долей, включающих квадратные корни». В частности, среди соотношений встречаются величины, близкие по значению к √2, √3 и ε/π. Значение числа я известно большинству людей — в отличие от в, которое служит основанием натуральных логарифмов. Любопытно, что соотношение ε/π очень близко по значению к √3/2.
Эта неоднозначная связь между ε/π и √3/2 привела Торрана к геометрии вписанного в сферу тетраэдра, позволившей разрешить эту неоднозначность. Синус угла 60° равняется √3/2, или 0,866025, а соотношение ε/π дает величину 0,865256, что приводит нас к тетраэдру. Причина этого заключается в том, что «площадь поверхности сферы, разделенная на площадь поверхности тетраэдра, дает очень точное приближение числа ε, которое мы обозначим как ε': ε = 2,718282, ε' = 2,720699». Подставляя ε' в соотношение ε/π, получаем результат 0,866025, практически совпадающий с √3/2. Это, по всей видимости, подтверждает выдвинутое в книге «Звезда Смерти Гизы» предположение, что основой гармонической унификации физики служили сконструированные геометрические аппроксимации фундаментальных констант.
На сайте Хогланда, тем не менее, приводится еще одна интересная геометрическая закономерность, на которой он подробно не задерживается. Если представить два тетраэдра, вписанные во вращающуюся сферу любого радиуса таким образом, что каждый тетраэдр ориентирован на противоположный полюс оси вращения и они перпендикулярны друг другу с точки зрения осевой симметрии, то получится знакомый символ священной геометрии, присутствующий в различных оккультных системах:
Этот символ представляет собой «звезду Давида», вавилонский знак, который евреи принесли с собой после возвращения из вавилонского плена и который с тех пор стал знаменитым символом иудаизма. Но возможно, это и самый известный символ совершенной физики, в чем мы вскоре убедимся.
Первое, что бросается в глаза, это его сходство с геометрией комплекса Гизы, повернутого вокруг оси, проходящей через вершину Великой пирамиды, о чем говорилось в главе IV:
Это сходство, по всей видимости, подтверждает гипотезу Алана Элфорда, проанализированную в главе II — о том, что Вторая пирамида, Сфинкс, третья пирамида, а также «храмы» и «аллеи» были построены гораздо позже Великой пирамиды, но согласно точному геометрическому плану. То есть остальные крупные постройки могли быть возведены на старых местах, ранее занятых чем-то другим, или на тех местах, которые предусматривались первоначальным планом. В любом случае если рассматривать весь комплекс как единое целое, создается впечатление, что он намеренно был спланирован таким образом, чтобы вращать фундаментальную геометрию пространства. Таким образом, комплекс представляет собой двумерный аналог трехмерной фигуры из двух вписанных в сферу тетраэдров. Другими cловами, комплекс Гизы является масштабным образцом тех тетраэдрических физики и математики, которые Хогланд и Торран обнаружили в Сидонии на Марсе.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Боевая машина Гизы"
Книги похожие на "Боевая машина Гизы" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Джозеф Фаррелл - Боевая машина Гизы"
Отзывы читателей о книге "Боевая машина Гизы", комментарии и мнения людей о произведении.