Вернер Гильде - Зеркальный мир

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Зеркальный мир"
Описание и краткое содержание "Зеркальный мир" читать бесплатно онлайн.
Крупный ученый из ГДР в живой и увлекательной форме знакомит читателей с одним из фундаментальных понятий современного естествознания - симметрией. Рассматриваются ее основные виды, проявления в природе и использование в науке, технике и повседневной жизни. Для широкого круга читателей.
Для бесполезных камней (как уже было сказано - на их взгляд) горняки нередко находили названия в преданиях и легендах. Так, например, произошло название руды кобальтовый блеск. Кобальтовые руды похожи на серебряные и при добыче иногда принимались за них. Когда из такой руды не удавалось выплавить серебро, считалось, что она заколдована горными духами - кобольдами.
Тяжелый шпат (барит). Рудокопы в стариых выбирали названия для минералов по внешним признакам. Тот, кто однажды взвесил на руке этот минерал и всмотрелся в форму его кристаллов, не забудет его названия
Когда же минералогия превратилась в науку, было открыто великое множество пород и минералов. И при этом все чаще возникали трудности с изобретением для них наименований. Новые минералы часто называли по месту находки (ильменит - в Ильменских горах) или в честь знаменитого человека (гетит - в честь Гете) или же давали ему греческое или латинское название.
Музеи пополнялись грандиозными коллекциями камней, которые становились уже необозримыми. Не слишком помогали и химические анализы, потому что многие вещества одного и того же состава образуют подчас кристаллы совершенно различного облика. Достаточно вспомнить хотя бы снежинки.
Существуют тысячи различных узоров снежинок
В 1850 г. французский физик Огюст Браве (1811-1863) выдвинул геометрический принцип классификации кристаллов, основанный на их внутреннем строении/По мнению Браве, мельчайший, бесконечно повторяющийся мотив узора и есть определяющий, решающий признак для классификации кристаллических веществ. Браве представлял себе в основе кристаллического вещества крошечную элементарную частицу кристалла. Сегодня со школьной скамьи мы знаем, что мир состоит из мельчайших частиц - атомов и молекул. Но Браве оперировал в своих представлениях крошечным «кирпичиком» кристалла и исследовал, каковы могли быть у него углы между ребрами и в каких соотношениях его стороны могли находиться между собой (Для большей наглядности автор упрощает историю вывода решеток Браве. Предшественник Браве - французский кристаллограф Р. Ж. Гаюи (1743-1822) - действительно представлял себе кристаллы сложенными из элементарных «кирпичиков». О. Браве заменил эти «кирпичики» центрами их тяжести и таким образом перешел от «кирпичной кладки» Гаюи к пространственной решетке. - Прим. ред).
Каждый кристалл можно поместить в систему координатных осей
В кубе три ребра расположены всегда под углом 90° друг к другу. Все стороны имеют равную длину. У кирпича углы тоже составляют 90°. Но его стороны различной длины. У снежинок, наоборот, мы не найдем угла 90°, а только 60 или 120°.
Составленный из квадратов ряд можно разделить диагоналями на ряд других квадратов
Браве установил, что существуют 7 комбинаций ячеек с одинаковыми или разными сторонами (осями) и углами. Для углов он принял только два варианта: равный 90° и не равный 90°. Только один угол во всей его системе в порядке исключения имеет 120°. В самом скверном случае все три оси и все углы ячейки различны по величине, при этом в ней нет углов ни в 90, ни в 120°. Все в ней косо и криво, и, можно подумать, в мире кристаллов таким не должно быть места. Между тем к ним относится, например, сульфат меди (медный купорос), голубые кристаллы которого обычно всем так нравятся.
Куб содержит 6 пирамид (для большей наглядности изображена только одна). На каждой из шести квадратных граней можно построить аналогичные пирамиды
В некоторых из этих 7 пространственных решеток элементарные «кирпичики» можно упаковать по-разному. Для нас, знающих сегодня о строении атома, это нетрудно представить и продемонстрировать с помощью шариков для пинг-понга. Но 125 лет назад гениальная идея Браве была новаторской и открывала новые пути в науке Весьма вероятно, что и Браве исходил из узоров кафеля или мотивов шахматной доски.
Если мы разделим квадратные поля диагоналями, то возникает новый рисунок из квадратов, стоящих на углах. В трехмерном Кпостранстве это соответствует кубу, разложенному на шесть пирамид. Каждая такая пирамида составляет половину октаэдра.
Четырнадцать решеток Браве. Они строятся в семи возможных сингониях (осевых системах). Но при этом во внимание принимается также еще и расположение атомов. Так, кубы нижнего ряда соответствуют одной и той же кубической ячейке
Те кто когда-нибудь выращивал кристаллы поваренной соли, нают, что соль может кристаллизоваться в кубах, а может - в октаэдрах. Иными словами, экспериментальные наблюдения совладают с теоретическими соображениями.
Испробовав возможные варианты упаковки для всех семи осевых систем, Браве вывел 14 решеток. Мы приводим их здесь в нашем современном атомистическом изображении.
Если у куба отрезать углы, возникнут новые грани, в данном случае это будут грани октаэдра
Рассматривая решетки Браве внимательней и пробуя мысленно построить из них кристаллы, вы, вероятно, увидите, как можно провести в них плоскости и оси симметрии. Эти возможности сразу расширятся, если мы в одной из элементарных ячеек образуем новые грани. Возьмем куб (естественно, мысленно!), поставим его на угол и обрежем (все так же мысленно) все углы, тогда у него образуются совершенно новые треугольные грани. А из квадратных граней возникнут восьмиугольники: тем самым появятся новые мотивы симметрии.
Анализ элементов симметрии в каждой из осевых систем кристаллических решеток приводит к возникновению 32 классов симметрии. Все многообразие минералов в природе подразделяется на основе 32 классов симметрии. Вооруженные этими знаниями, задумаемся о классификации пяти тел Платона. То, что куб, с его тремя равными осями и тремя прямыми углами, относится к кубической осевой системе (сингонии), не нуждается в доказательстве. В рамках более детального подразделения он принадлежит пентагон-тетраэдрическому классу симметрии (К кубической системе относятся 5 из 32 классов кристаллографической симметрии. К ним принадлежат 5 разновидностей куба, различающихся по симметрии. Наиболее симметричный куб имеет 9 плоскостей симметрии, 3 четверные, 4 тройные и 6 двойных осей симметрии.Наименее симметричный куб, о котором и идет речь в тексте, обладает лишь тремя двойными и четырьмя тройными осями симметрии. - Прим. ред). Мы не станем здесь приводить названий других классов из-за их сложности. Однако обратите внимание на термин «тетраэдрический», так как тетраэдр - одно из Платоновых тел.
В каждом кубе можно расположить пару тетраэдров
А если у вас хорошая память, вы вспомните и пентагондоде-каэдр, также входящий в этот класс симметрии. На картинке хорошо видно, как тетраэдр можно образовать из куба. Остальные Платоновы тела также относятся к кубической системе. Древние греки, надо думать, ужасно расстроились бы, знай они, что такой прозаический минерал, как серный колчедан, имеет ту же симметрию, что и их «совершенные» тела.
ПЕСТРЫЙ МИР КАЛЕЙДОСКОПА
Не знаю, милый читатель, был ли у вас в детстве калейдоскоп, но если нет, то что-то безвозвратно прошло мимо вас... Калейдоскоп - это трубка, глядя в которую вы видите фантастически прекрасный узор из разноцветных многоугольников. Стоит повернуть игрушку, как внутри послышится легкий шорох и возникнет новый орнамент. И так при каждом повороте, и всякий раз новый узор - один неожиданней и красивее другого.
Детская любознательность не ведает границ. Ребенку так интересно узнать, как и почему появляются все новые и новые фигуры, что он разбирает трубочку на части (благо она из картона). И сколь велико бывает разочарование, когда внутри обнаруживается всего-навсего несколько разноцветных осколков стекла и бусинок да еще два маленьких зеркальца...
Из-за преломления света удильщик видит щуку не там, где она находится на самом деле
Если вы никогда не заглядывали в калейдоскоп, вспомните «заставки», появляющиеся на экране вашего телевизора в паузах рекламных передач. Эти меняющиеся геометрические орнаменты напоминают узоры калейдоскопа.
Принцип действия калейдоскопа наглядно демонстрирует простой эксперимент. Поставьте два зеркала под углом друг к другу, поместите перед ними свечу, и вы увидите четыре свечи. Ведь в зеркальном угле с раствором 90° наблюдаемый предмет виден четырежды (360° : 90° = 4):один раз в оригинале и трижды - в отражениях. Зеркальный угол с раствором 72° покажет то же изображение 5 раз. А два зеркала, угол между которыми составляет 60°, дадут нам шестикратное изображение. Разница между великолепным многоцветным узором и скромной действительностью с ее двумя небольшими зеркалами н четырьмя-восемью маленькими бусинками и осколками цветного стекла ошеломляет!
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Зеркальный мир"
Книги похожие на "Зеркальный мир" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Вернер Гильде - Зеркальный мир"
Отзывы читателей о книге "Зеркальный мир", комментарии и мнения людей о произведении.