» » » » Вашингтон Плэтт - Информационная работа стратегической разведки. Основные принципы


Авторские права

Вашингтон Плэтт - Информационная работа стратегической разведки. Основные принципы

Здесь можно скачать бесплатно "Вашингтон Плэтт - Информационная работа стратегической разведки. Основные принципы" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Издательство иностранной литературы, год 1958. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Вашингтон Плэтт - Информационная работа стратегической разведки. Основные принципы
Рейтинг:
Название:
Информационная работа стратегической разведки. Основные принципы
Издательство:
Издательство иностранной литературы
Год:
1958
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Информационная работа стратегической разведки. Основные принципы"

Описание и краткое содержание "Информационная работа стратегической разведки. Основные принципы" читать бесплатно онлайн.



Аннотация издательства: Автором книги является американский генерал, в течение многих лет работавший в органах американской разведки. В книге рассматриваются основные принципы и методы информационной работы стратегической разведки и возможности использования в этой работе знаний и методологии общественных и естественных наук. Автором затрагиваются также вопросы подготовки работников для информационной службы стратегической разведки. Книга представляет интерес для военного читателя и лиц, связанных с информационной работой.






Описанные нами три случая в равной мере могут привлечь внимание офицера информации и даже вызвать у него определенные сомнения. Вот эти три случая:

1) корреляция двух рядов событий;

2) совпадение во времени двух или нескольких событий;

3) случай, когда имеет место событие, которое a priori рассматривается как весьма невероятное (как в приведенном примере с картами, сдаваемыми при игре в бридж).

В каждом из трех случаев, естественно, могут иметь место или же могут быть придуманы самые нелепые корреляции. Так, Сэржент [78] пишет, что в северном полушарии существует обратная корреляция между среднемесячной температурой воздуха и количеством букв в названии месяца. Месяцы, содержащие много букв в названии, — декабрь, январь и февраль — холодные. Месяцы с короткими названиями — май, июнь, июль — жаркие. В жизни имеется бессчисленное количество забавных» но бессмысленных случаев корреляций и совпадений.

Вопрос: Каким образом должен офицер информации использовать три указанных случая? Следует ли их игнорировать в связи с имеющими место нелепостями? Или, с другой стороны, должен ли он считать, что они о чем-то свидетельствуют, поскольку данный высокий коэффициент корреляции или данное единичное явление могли случайно иметь место только в одном из ста (или миллиона) случаев?

Ответ: Правильное решение этого вопроса не исчерпывается выбором одного из двух предложенных выше выходов. Если обстоятельства оправдывают работу в данном направлении, офицер информации должен продолжить изучение вопроса.

Корреляция, совпадение или необычное явление сами по себе ничего не доказывают, но они могут привлечь внимание к отдельным вопросам и привести к дополнительному исследованию. Для разведки имеет значение только такое положение, при котором можно установить логическую связь между двумя рядами явлений или двумя совпадающими во времени явлениями либо же дать разумное объяснение какому-либо необычному единичному явлению. Для того чтобы вызвать интерес у разведки, необходимо открыть логическую связь между явлениями или дать им определенное объяснение.

Уайтхед [91] пишет:

«Самая распространенная ошибка связана с предположением о том, что в случае, когда проведены длительные и точные математические вычисления, можно с полной уверенностью считать результаты этих вычислений применимыми к какому-либо явлению природы».

Таким образом, офицер информации, знакомый с теорией вероятностей, правильно оценивает корреляции с высоким коэффициентом и в высшей степени необычные явления. Он знает, как извлечь ту пользу, которая может в них заключаться. Если данные явления представляют интерес толькоих необычным характером, он не станет зря тратить время на поиски причин, объясняющих, почему они имели место.

Распределение и дисперсия

Любой группе однородных измеримых величин, таких, например, как рост людей, коэффициент умственного развития, размер заработной платы, свойственно явление дисперсии: некоторые люди имеют высокий рост, другие низкий. Часто мы обнаруживаем, что наряду с существованием отдельных очень низких людей рост подавляющего большинства составляет примерно 1 м 75 см.

Человеку, мыслящему с учетом теории вероятностей, даже если он не знает высшей математики, знакома «кривая нормального распределения», изображенная на рис. 5. На этом рисунке отражена относительная частота повторяемости определенного роста, коэффициента умственного развития и размера заработной платы для любой данной группы явлений. Результаты широкого исследования группы однородных явлений, проведенного выборочным методом, должны графически выразиться в виде кривой, изображенной на рис. 5. Наиболее часто повторяющиеся значения должны сосредоточиваться по обе стороны от линии, изображающей среднее арифметическое значение для данных явлений.

Степень дисперсии может определяться различными путями: путем учета амплитуды, среднего квадратичного отклонения, среднего отклонения, вероятной ошибки и т. д. Соответствующие определения и формулы можно найти в любой книге по математической статистике (см. список литературы в конце книги).

Если результаты изучения частоты повторяемости явлений какой-либо группы изображаются в виде кривой, приведенной на рис. 6, офицер информации может с полным основанием считать, что фактически он изучал не одну, а две различные группы.

Рис. 5. Кривая нормального распределения. Иллюстрация нормы среднего квадратичного отклонения и среднего значения. Рис. 6. Бимодальная кривая частоты.

Офицер информации, познакомившись с теорией вероятностей, поймет, что при изучении фактического материала можно извлечь ценную для разведки информацию с помощью такого «параметра», как среднее квадратичное отклонение. Он поймет также, что извлечь пользу из большого количества цифр, например из тысячи цифр, едва ли удастся, если не применить какой-либо обобщающий показатель — параметр. Помимо параметров, служащих для определения степени дисперсии, имеются параметры, характеризующие срединную тенденцию повторяемости величин данной группы. Самыми важными параметрами такого рода являются среднее арифметическое значение, медиана и мода. Все эти параметры иногда объединяют под общим названием «среднее значение». Эта категория является довольно любопытной В среднем значении получает выражение «лучшее из худшего и худшее из лучшего».

Руководствуясь приобретенным ранее" опытом, офицер информации, однако, никогда не принимает за чистую монету поверхностные рассуждения, основанные на средних значениях. В отчетах компаний часто можно встретить следующие заявления:

«Круг акционеров нашей компании весьма широк. Каждый акционер в среднем имеет 100 акций». У многих создается впечатление, что очень большое количество акционеров имеет примерно по сто акций каждый. Приведенное выше заявление обычно делается со специальной целью создать такое впечатление. В действительности подавляющая масса акций может находиться в руках весьма узкой группы акционеров. Вместе с тем правление компании могло провозгласить о своем намерении превратить рабочих и служащих в собственников компании и продать тысячам рабочих и служащих по 5—25 акций каждому. В результате акции могут распределяться следующим образом:


Директор А……………….. 40 000 акций

Директор Б……………….. 25000 акций

Директор В……………….. 20 000 акций

500 рабочих и служащих (по 20 акций у каждого) 10000 акций

500 рабочих и служащих (по 10 акций у каждого) 5 000 акций


1003 акционера владеют…………..100 000 акций

В среднем каждый акционер имеет 99,7 акций.


Разведчик, знакомый с теорией вероятностей, понимает, что медиана или мода лучше выражают срединную тенденцию повторяемости большого количества величин, чем среднее арифметическое значение.

Пожалуй, нагляднее всего сравнительная характеристика среднего значения, медианы и моды дана на схеме в книге Хаффа [73], воспроизведенной на рис. 7.

Рис. 7. Среднее значение, медиана, мода.

Разведчик, мыслящий с учетом теории вероятностей, понимает, что обычно отдельные величины группируются вокруг определенного среднего значения и по мере удаления от этого среднего значения дисперсия все более и более увеличивается. Он понимает, что величины, наиболее удаленные от среднего значения, могут существенным образом отличаться от основной массы величин данной группы. В каждом конкретном случае он четко указывает, что его интересует прежде всего основная масса величин или крайние для данной группы величины.

Например, разрабатывая курс лекций для студентов, не следует ориентироваться на самых способных или самых слабых студентов. Лекции, которые могут усвоить самые слабые из 200 студентов первого курса, покажутся совершенно неудовлетворительными студентам со средними способностями, составляющими 90 процентов. Точно так же лекции, которые могут заинтересовать двух-трех наиболее способных студентов, не будут усвоены основной массой студентов.

Напротив, при проектировании моста мы исходим из учета максимальной нагрузки. Мост может провалиться под тяжестью максимальной, а не средней нагрузки.

Выборочный метод исследования

Офицер информации, знакомый с теорией вероятностей и учитывающий широкую дисперсию внутри данной группы величин, будь то рост людей, дневная температура или точность артиллерийского огня, ясно представляет себе, что, отобрав десять величин из ста, он может случайно столкнуться с крайними или средними для данной группы показателями, например с самым высоким, самым низким или средним ростом людей изучаемой группы Такой разведчик обычно не делает окончательных выводов на основании изучения небольшой выборки без дополнительной работы над проблемой. Он знает, что в информационной работе многие выводы приходится делать на основе выборочного материала. Математическая статистика учит его, каким образом извлекать максимальную пользу из имеющихся выборок, допуская при этом минимум ошибок. Чтобы понимать все это, ему не требуется знать высшую математику.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Информационная работа стратегической разведки. Основные принципы"

Книги похожие на "Информационная работа стратегической разведки. Основные принципы" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Вашингтон Плэтт

Вашингтон Плэтт - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Вашингтон Плэтт - Информационная работа стратегической разведки. Основные принципы"

Отзывы читателей о книге "Информационная работа стратегической разведки. Основные принципы", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.