» » » » Коллектив авторов - Логика: Шпаргалка


Авторские права

Коллектив авторов - Логика: Шпаргалка

Здесь можно скачать бесплатно "Коллектив авторов - Логика: Шпаргалка" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Литагент «РИОР»47f3ef35-f8ea-102d-b528-b4a213751508, год 2010. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Коллектив авторов - Логика: Шпаргалка
Рейтинг:
Название:
Логика: Шпаргалка
Издательство:
Литагент «РИОР»47f3ef35-f8ea-102d-b528-b4a213751508
Год:
2010
ISBN:
978-5-9557-0374-9
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Логика: Шпаргалка"

Описание и краткое содержание "Логика: Шпаргалка" читать бесплатно онлайн.



В шпаргалке в краткой и удобной форме приведены ответы на все основные вопросы, предусмотренные государственным образовательным стандартом и учебной программой по дисциплине «Логика».

Книга позволит быстро получить основные знания по предмету, повторить пройденный материал, а также качественно подготовиться и успешно сдать зачет и экзамен.

Рекомендуется всем изучающим и сдающим дисциплину «Логика» в высших и средних учебных заведениях.






Условно-категорическим называется умозаключение, в котором одна из посылокусловное, а другая посылка и заключениекатегорические суждения.

Это умозаключение имеет два правильных модуса: утверждающий и отрицающий.

1. В утверждающем модусе (modus ponens) посылка, выраженная категорическим суждением, утверждает истинность основания условной посылки, а заключение утверждает истинность следствия; рассуждение направлено от утверждения истинности основания к утверждению истинности следствия. Напр.:

Если иск предъявлен недееспособным лицом (р), то суд оставляет иск без рассмотрения (q).

Иск предъявлен недееспособным лицом (р). Суд оставляет иск без рассмотрения (q).

Первая посылка – условное суждение, выражающее связь основания (р) и следствия (q). Вторая посылка – категорическое суждение, в котором утверждается истинность основания (р): иск предъявлен недееспособным лицом. Признав истинность основания (р), мы признаем истинность следствия (q): суд оставляет иск без рассмотрения.

Утверждающий модус дает достоверные выводы. Он имеет схему:


2. В отрицающем модусе (modus tollens) посылка, выраженная категорическим суждением, отрицает

истинность следствия условной посылки, а заключение отрицает истинность основания. Рассуждение направлено от отрицания истинности следствия к отрицанию истинности основания. Напр.: Если иск предъявлен недееспособным лицом (р), то суд оставляет иск без рассмотрения (q). Суд не оставил иск без рассмотрения (⌉ q). Неверно, что иск предъявлен недееспособным лицом (⌉р). Схема отрицающего модуса:


Нетрудно установить, что возможны еще две разновидности условно-категорического силлогизма: от отрицания истинности основания к отрицанию истинности следствия и от утверждения истинности следствия к утверждению истинности основания.

Однако заключение по этим модусам не будет достоверным. Таким образом, из четырех модусов условно-категорического умозаключения, исчерпывающих все возможные комбинации посылок, достоверные заключения дают два: утверждающий и отрицающий. Они выражают законы логики и называются правильными модусами условно-категорического умозаключения. Эти модусы подчиняются правилу: утверждение основания ведет к утверждению следствия и отрицание следствия – к отрицанию основания. Два других модуса достоверных заключений не дают. Они называются неправильными модусами и подчиняются правилу: отрицание основания не ведет с необходимостью к отрицанию следствия и утверждение следствия не ведет с необходимостью к утверждению основания.

49. РАЗДЕЛИТЕЛЬНО-КАТЕГОРИЧЕСКОЕ УМОЗАКЛЮЧЕНИЕ

Разделительно-категорическим называется умозаключение, в котором одна из посылок – разделительное, а другая посылка и заключение – категорические суждения.

Простые суждения, из которых состоит разделительное (дизъюнктивное) суждение, называются членами дизъюнкции, или дизъюнктами. Напр., разделительное суждение «Облигации могут быть предъявительскими или именными» состоит из двух суждений – дизъюнктов: «Облигации могут быть предъявительскими» и «Облигации могут быть именными», соединенных логическим союзом «или».

Утверждая один член дизъюнкции, мы с необходимостью должны отрицать другой и, отрицая один из них, – утверждать другой. В соответствии с этим различают два модуса разделительно-категорического умозаключения: утверждающе-отрицающий и отрицающе-утверждающий.

1. В утверждающе-отрицающем модусе (modus ponendo tollens) меньшая посылка, категорическое суждение, утверждает один член дизъюнкции, заключение – также категорическое суждение – отрицает другой ее член. Напр.: Облигации могут быть предъявительскими (р) или именными (q).

Данная облигация предъявительская (p). Данная облигация не является именной (q).

Схема утверждающе-отрицающего модуса:


 где – символ строгой дизъюнкции.

Заключение по этому модусу всегда достоверно, если соблюдается правило: большая посылка должна быть исключающе-разделительным суждением, или суждением строгой дизъюнкции. Если это правило не соблюдается, достоверного заключения получить нельзя.

2. В отрицающе-утверждающем модусе (modus tollendo ponens) меньшая посылка отрицает один дизъюнкт, заключение утверждает другой. Напр.: Облигации могут быть предъявительскими (р) или именными (q). Данная облигация не является предъявительской (⌉р). Данная облигация именная (q).

Схема отрицающе-утверждающего модуса:


где < > – символ закрытой дизъюнкции.

Утвердительный вывод получен посредством отрицания: отрицая один дизъюнкт, мы утверждаем другой.

Заключение по этому модусу всегда достоверно, если соблюдается правило: в большей посылке должны быть перечислены все возможные суждения – дизъюнкты, иначе говоря, большая посылка должна быть полным (закрытым) дизъюнктивным высказыванием. Применяя неполное (открытое) дизъюнктивное высказывание, достоверного заключения получить нельзя.

Разделительная посылка может включать не два, а три и больше членов дизъюнкции.

50. УСЛОВНО-РАЗДЕЛИТЕЛЬНОЕ УМОЗАКЛЮЧЕНИЕ

Умозаключение, в котором одна посылка условное, а другаяразделительное суждения, называется условно-разделительным, или лемматическим (от лат. – предположение).

Разделительное суждение может содержать две, три и большее число альтернатив, поэтому леммати-ческие умозаключения делятся на дилеммы (две альтернативы), трилеммы (три альтернативы) и т. д.

В простой конструктивной дилемме условная посылка содержит два основания, из которых вытекает одно и то же следствие. Разделительная посылка утверждает оба возможных основания, заключение утверждает следствие. Рассуждение направлено от утверждения истинности оснований к утверждению истинности следствия:


Если обвиняемый виновен в заведомо незаконном задержании (р), то он подлежит уголовной ответственности за преступление против правосудия (r); если он виновен в заведомо незаконном заключении под стражу (q), то он также подлежит уголовной ответственности за преступление против правосудия (r). Обвиняемый виновен или в заведомо незаконном задержании (р), или в заведомо незаконном заключении под стражу (q).

Обвиняемый подлежит уголовной ответственности за преступление против правосудия (r).

В сложной конструктивной дилемме условная посылка содержит два основания и два следствия.

Разделительная посылка утверждает оба возможных следствия. Рассуждение направлено от утверждения истинности оснований к утверждению истинности следствий:


Сертификат может быть предъявительским (р) или именным (r).

В простой деструктивной дилемме условная посылка содержит одно основание, из которого вытекает два возможных следствия. Разделительная посылка отрицает оба следствия, заключение отрицает основание. Рассуждение направлено от отрицания истинности следствий к отрицанию истинности основания.


Если Н. совершил умышленное преступление (р), значит, в его действиях был прямой (q) или косвенный умысел (r).

Но в действиях Н. не было ни прямого (q), ни косвенного умысла (r).

Преступление, совершенное Н., не является умышленным (р).

В сложной деструктивной дилемме условная посылка содержит два основания и два следствия. Разделительная посылка отрицает оба следствия, заключение отрицает оба основания. Рассуждение направлено от отрицания истинности следствий к отрицанию истинности оснований:

51. СОКРАЩЕННЫЙ СИЛЛОГИЗМ (ЭНТИМЕМА)

Силлогизм с пропущенной посылкой или заключением называется сокращенным силлогизмом, илиэнтимемой (от греч. – в уме).

Широко используются энтимемы простого категорического силлогизма, особенно выводы по первой фигуре. Напр.: «Н. совершил преступление и поэтому подлежит уголовной ответственности». Здесь пропущена большая посылка: «Лицо, совершившее преступление, подлежит уголовной ответственности». Она представляет собой общеизвестное положение.

Полный силлогизм строится по 1-й фигуре:

Лицо, совершившее преступление (М), подлежит уголовной ответственности (Р).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Логика: Шпаргалка"

Книги похожие на "Логика: Шпаргалка" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Коллектив авторов

Коллектив авторов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Коллектив авторов - Логика: Шпаргалка"

Отзывы читателей о книге "Логика: Шпаргалка", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.