Морис Клайн - Математика. Поиск истины.

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Математика. Поиск истины."
Описание и краткое содержание "Математика. Поиск истины." читать бесплатно онлайн.
Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.
Предназначена для читателей, интересующихся историей и методологией науки.
Галилей, которого мы уже упоминали как одного из самых выдающихся приверженцев гелиоцентрической теории, также предложил свою философию естествознания. Она имела немало общего с философией Декарта, но оказалась более радикальным и эффективным руководством к действию. Выдвинутый Галилеем грандиозный план прочтения «книги природы» провозгласил совершенно новую концепцию целей научного исследования и определил роль математики в достижении этих целей. Именно с предложенного Галилеем плана исследования и постижения природы берет начало современная математическая физика.
Что привело Галилея к поистине революционному пересмотру методологии науки, остается неясным. Галилей знал, что Птолемей называл свою геоцентрическую теорию всего лишь удобной математической схемой. Он был осведомлен и о том, что Коперник, отстаивая созданную им гелиоцентрическую теорию, ссылался прежде всего на ее математическую простоту. (Аналогичные доводы приводил и Кеплер, но Галилей не знал о его работах.) Галилей разделял мнение Коперника и Птолемея о том, что природа сотворена по математическому плану. В небольшом, ныне довольно известном сочинении «Пробирных дел мастер» (1623) Галилей писал:
Философия природы написана в величайшей книге, которая всегда открыта перед нашими глазами, — я разумею Вселенную, но понять ее сможет лишь тот, кто сначала выучит язык и постигнет письмена, которыми она начертана. А написана эта книга на языке математики, и письмена ее — треугольники, окружности и другие геометрические фигуры, без коих нельзя понять по-человечески ее слова: без них — тщетное кружение в темном лабиринте.
([13], с. 58.)Природа проста и в высшей степени упорядочена, все ее явления регулярны и необходимы. Она действует в полном соответствии с совершенными и незыблемыми математическими законами. Божественный разум — источник рационального в природе. При сотворении мира Бог вложил в него строгую математическую необходимость, которую представители человеческого рода, хотя их разум создан по образу и подобию божьему, постигают лишь ценой значительных усилий. Математическое знание не только абсолютно истинно, но и священно, как священна любая строка Библии. Более того, математическое знание превосходит Священное писание, ибо по поводу последнего существует много разногласий и споров, тогда как математические истины бесспорны. Исследование природы — занятие столь же благочестивое, как и изучение Библии: «То, как Господь Бог предстает перед нами в явлениях природы, достойно восхищения ничуть не в меньшей степени, чем его дух в священных строках Библии».
Хотя Декарт предпринял первые шаги к изучению законов движения, он не пытался всерьез заняться проблемами, возникшими в связи с утверждением гелиоцентрической теории. Согласно этой теории, Земля, вращаясь вокруг своей оси, одновременно обращается вокруг Солнца. Почему тела не срываются с движущейся Земли? Почему брошенные тела должны падать на Землю, если она не является центром Вселенной? Более того, все тела, в частности свободно брошенное тело, движутся так, будто Земля покоится. Чтобы объяснить все эти земные явления, требовались какие-то новые принципы движения.
Дерзкий новаторский подход Галилея, развитый его последователями, состоял в том, чтобы получить количественные описания явлений, представляющих научный интерес, независимо от каких бы то ни было физических объяснений. Поясним на примере. Представим себе простую ситуацию: мяч, выпущенный из руки, падает на землю. Почему он падает? В объяснение этого можно приводить бесчисленное множества гипотез. Галилей рекомендует поступить иначе. По мере того как время, отсчитываемое от начала падения, увеличивается, растет и расстояние, пройденное мячом от начальной точки. На математическом языке и расстояние, проходимое мячом при свободном падении, и время, отсчитываемое от начала падения, называются переменными, ибо в процессе падения и то и другое изменяется. Галилей попытался найти математическое соотношение между этими переменными. Полученный им результат нетрудно записать с помощью принятой в современной науке «стенографии» — в виде формулы. Формула, о которой идет речь, имеет вид s = gt2/2 = 4,9t2 (где g = 9,8 м/с2 — ускорение свободного падения вблизи поверхности Земли). Она означает, что расстояние (в метрах), проходимое падающим мячом за t секунд, в 4,9 раза больше квадрата числа секунд. Например, за 3 с мяч пройдет при свободном падении 4,9×32 = 44,1 м, за 4 с: 4,9×42 = 78,4 м и т.д.
Отметим, что формула компактна, точна и отличается количественной полнотой. При любом значении одной переменной (в нашем примере — времени) формула позволяет точно вычислить соответствующее значение другой переменной (расстояния). Эти вычисления могут быть выполнены при любом (в действительности неограниченном) числе значений временной переменной, поэтому простая формула s = 4,9t2 в действительности содержит в себе бесконечно много информации.
Следует подчеркнуть, однако, одно важное обстоятельство: эта математическая формула описывает то, что происходит, не объясняя причинной связи, т.е. ничего не говорит о том, почему мяч падает. Она лишь дает нам количественную информацию о том, как происходит падение мяча. Обычно ученый пытается установить математическую зависимость (выражаемую формулой) между переменными, которые, как он надеется, имеют причинно-следственную связь. Но для успешного решения этой задачи — установления математической зависимости между переменными — ученому вовсе не обязательно исследовать или понимать причинную зависимость. И это отчетливо понимал Галилей, отстаивая приоритет математического описания перед менее успешным качественным исследованием и поиском причинных связей в природе.
Галилей решительно отдавал предпочтение поиску математических формул, описывающих явления природы. Сама по себе эта идея, как и большинство идей, рожденных гениями, поначалу не производит особого впечатления. Много ли проку в «голых» математических формулах? Ведь они ничего не объясняют. Они просто описывают происходящее на точном языке, не допускающем недомолвок и иносказаний. Тем не менее именно формулы оказались наиболее ценным знанием, которое людям удалось получить о природе. Как мы увидим в дальнейшем, поразительные практические и теоретические достижения современной науки стали возможны вследствие того, что человечество накопило количественное описательное знание и научилось пользоваться им, а отнюдь не благодаря метафизическим, теологическим и даже механическим объяснениям причин наблюдаемых явлений.
В «Беседах и математических доказательствах, касающихся двух новых отраслей науки» (1638) Галилей вкладывает в уста одного из участников диалога (Сальвиати) такие слова:
Мне думается, что сейчас неподходящее время для занятий вопросом о причинах ускорения в естественном движении, по поводу которого различными философами было высказано столько различных мнений; одни приписывали его приближению к центру, другие — постепенному частичному уменьшению сопротивляющейся среды, третьи — некоторому воздействию окружающей среды, которая смыкается позади падающего тела и оказывает на него давление, как бы постоянно его подталкивая; все эти предположения и еще многие другие следовало бы рассмотреть, что, однако, принесло мало пользы. Сейчас для нашего Автора будет достаточно, если мы рассмотрим, как он исследует и излагает свойства ускоренного движения (какова бы ни была причина ускорения).
([12], т. 2, с. 243-244.)Итак, положительное физическое знание следует отделять от вопросов о причинной зависимости, а всякого рода предположения о физических причинах оставить в стороне. Галилей настоятельно советовал естествоиспытателям: не рассуждайте о том, почему происходит какое-то явление — описывайте его количественно.
Первая реакция на эту основополагающую идею Галилея, судя по всему, была отрицательной. В описаниях явлений с помощью формул большинство ученых видели лишь первый шаг. Истинную же задачу науки, по их убеждению, точно сформулировали последователи Аристотеля: пытаться найти физические объяснения наблюдаемых явлений. Даже у Декарта решение Галилея заняться поиском описательных формул вызвало протест: «Все, что Галилей говорит о телах, свободно падающих в пустоте, лишено всякого основания; ему следовало бы сначала определить природу тяготения». По мнению Декарта, Галилею следовало бы поразмыслить о первопричинах наблюдаемых явлений. Ныне, в свете последующего развития науки, мы понимаем, что стремление Галилея сосредоточить все усилия на количественном описании явлений было весьма глубокой и плодотворной идеей научной методологии. Смысл ее, по-настоящему уясненный лишь позднее, состоял в том, чтобы науку о природе как можно теснее связать с математикой.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Математика. Поиск истины."
Книги похожие на "Математика. Поиск истины." читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Морис Клайн - Математика. Поиск истины."
Отзывы читателей о книге "Математика. Поиск истины.", комментарии и мнения людей о произведении.