» » » » Анатолий Шибанов - Александр Михайлович Ляпунов


Авторские права

Анатолий Шибанов - Александр Михайлович Ляпунов

Здесь можно скачать бесплатно "Анатолий Шибанов - Александр Михайлович Ляпунов" в формате fb2, epub, txt, doc, pdf. Жанр: Биографии и Мемуары, издательство Молодая гвардия, год 1985. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Анатолий Шибанов - Александр Михайлович Ляпунов
Рейтинг:
Название:
Александр Михайлович Ляпунов
Издательство:
Молодая гвардия
Год:
1985
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Александр Михайлович Ляпунов"

Описание и краткое содержание "Александр Михайлович Ляпунов" читать бесплатно онлайн.



Книга посвящена жизни и деятельности выдающегося русского математика и механика, академика Л. М. Ляпунова (1857–1918), разработавшего ряд научных направлений, не потерявших своей значимости и сегодня. Созданная им строгая и общая теория устойчивости признана во всем мире, а разработанные Ляпуновым методы лежат в основе большинства современных исследований устойчивости. Используя архивные материалы, автор воссоздает жизненный и творческий путь А. М. Ляпунова на фоне научной жизни России конца XIX — начала XX века, тесно переплетавшийся с судьбами его братьев — композитора С. М. Ляпунова и академика-слависта Б. М. Ляпунова.







И вот в руки Дарвина попали работы Пуанкаре, в которых описывалась неэллипсоидальная фигура равновесия, названная автором грушевидной, потому что она в самом деле напоминала грушу. Сомнений больше не было: досадный пробел наконец пополнен. Вся картина представлялась теперь Дарвину до конца завершенной. По мере ускорения вращения одна половина эллипсоида Якоби утолщается и набухает, вбирая в себя большую часть жидкой массы, другая же, наоборот, уменьшается в размерах. «Дыня» перестраивается в «грушу». Затем перемычка между двумя частями грушевидной фигуры становится все тоньше, «груша» делается похожей на песочные часы и разрывается под действием центробежных сил на две неравные доли. Именно так миллиарды лет назад Луна отделилась от матери-Земли.

Все складывалось для Дарвина как нельзя лучше, но праздновать успех было преждевременно. Он и сам это сознавал, потому предпринял такую основательную работу вослед изысканиям Пуанкаре. Требовалось обрести последний, решающий аргумент в пользу теории. Судьба ее зависела теперь от одного-единственного числа, к которому вели исключительно трудоемкие, кропотливые расчеты. Но их исход представлялся Дарвину столь многозначительным, что он не колеблясь решился обременить себя устрашающими вычислениями.

Такова уж особенность любого теоретического объекта в механике, что вопрос о его возможности должен решаться дважды. Сначала нужно доказать его физическую правдоподобность, осуществимость. Ведь силы, действующие на частицы вращающейся жидкости, могут не позволить им сложиться в грушевидную фигуру. Поэтому фигура должна быть прежде всего равновесной. В работах Ляпунова и Пуанкаре этот вопрос был разрешен. Теперь наступил черед другому вопросу: удержится ли жидкость в такой фигуре продолжительный срок? Не эфемерна ли, не мимолетна возникшая игрою механических сил «груша»? Ведь какие бы вещественные объекты ни измыслило человеческое сознание, в природе могут встретиться только те из них, которые устойчивы. Например, воображение с легкостью нарисует карандаш, стоящий на острие строго вертикально, и математик без труда отобразит в своих уравнениях это равновесное положение. Но в действительности никакой карандаш на острие не устоит. Неустойчивость переводит мысленно возможное явление в разряд нереальных, недействительных.

Реальная вращающаяся жидкость принимает только устойчивую форму равновесия в отличие от математического своего образа, который только теоретически мыслим и существует лишь в знаках и символах математики. Случайно или преднамеренно надавив резиновый мячик, можно его деформировать: сплющить или вмять с какого-то боку. Но стоит исчезнуть посторонней, внешней силе, и он снова сделается круглым. Потому что сфера — его устойчивая форма равновесия. Не бывает туго надутых резиновых шаров с вмятинами и уплощениями. Быть может, не бывает в природе и грушевидных фигур вращающейся жидкой массы? Чтобы ответить на такой вопрос, необходимо исследовать устойчивость «груши».

Пуанкаре рассмотрел вопрос об устойчивости грушевидной формы, но всего лишь в первом приближении. Известный в будущем немецкий ученый Карл Шварцшильд, защищавший в 1896 году докторскую диссертацию на тему «Теория равновесия однородной вращающейся жидкой массы Пуанкаре», показал, что нельзя судить об устойчивости «груши», не имея более точного решения. Справедливость его критики признал и сам Пуанкаре. Тогда-то и обратился Дарвин к французскому коллеге с просьбой помочь ему отыскать более точное, второе приближение. Пуанкаре был увлечен другими научными проблемами, потому ограничился тем, что опубликовал общие формулы для расчетов. Произведя с их помощью в высшей степени сложные и громоздкие вычисления, Дарвин пришел к выводу, что грушевидная фигура устойчива. Торжеству его не было границ: наконец-то математические расчеты подтвердили выдвинутую им космогоническую гипотезу! Свои результаты незамедлительно опубликовал он в статье «О грушевидных фигурах равновесия вращающейся жидкой массы», вышедшей в 1903 году. Она-то и попалась на глаза Ляпунову, известив его о том, что еще одно заинтересованное лицо активно занялось той же задачей, над которой ломал он голову.

Надо было поспешить с изданием своих результатов и Ляпунову. В статье «Об одной задаче Чебышева», помещенной в «Записках Академии наук» 1905 года, кратко изложил он достигнутое к той поре. Упомянув о предыдущей своей работе по фигурам равновесия неоднородной жидкости, Александр Михайлович подчеркнул преемственность между двумя большими и независимыми его исследованиями. Успешное решение задачи Клеро-Лапласа позволило использовать тот же метод для задачи Чебышева и доказать «с полной строгостью существование тех фигур равновесия, которые в течение столь долгого времени были известны лишь в первом приближении».

Так решена была наконец задача Чебышева: среди фигур равновесия вращающейся жидкости в самом деле отыскались неэллипсоидальные, в том числе грушевидные. Но, доказав математически осуществимость грушевидных форм, Ляпунов категорически отверг возможность встретить их в реальной действительности. Для этого им недоставало весьма важного, можно сказать, наипервейшего качества — устойчивости.

Вывод Ляпунова ошеломил зарубежных ученых. Только что Дарвин, опираясь на формулы Пуанкаре, доказал устойчивость грушевидной фигуры, а математик из далекого Петербурга настаивает на прямо противоположном. В самой точной из наук, где, казалось бы, гарантированы объективность и однозначность результатов, сложилась нетерпимая ситуация: расчеты двух видных исследователей совпали с точностью до «наоборот». Причем в буквальном смысле. Ведь в качестве критерия устойчивости выступала некая математическая величина, которую требовалось подсчитать. Покажут вычисления, что она положительна, значит, грушевидная фигура устойчива. Если же в итоге всех выкладок признают ее отрицательной, ни о какой устойчивости не может быть и речи. И вот Дарвин получает эту величину со знаком «плюс», а Ляпунов — со знаком «минус». Есть от чего прийти в недоумение ученому люду!

Никому и в голову не приходило обвинить таких знаменитостей в неумении считать, хотя выкладки требовались на редкость трудоемкие и головоломные. Достаточно сказать, что Ляпунов проводил некоторые вычисления с точностью до четырнадцатого десятичного знака! Оба академика — и русский, и английский — уже зарекомендовали себя предыдущими своими математическими трудами. Но кто-то же из них ошибался, раз результаты их взаимно исключали друг друга? А может быть, неверны формулы Пуанкаре? Нет, репутация французского математика исключительно высока, чтобы бросить ему такой упрек. Да и не представляло особого труда убедиться в правильности опубликованных им выводов. И Дарвин, ни минуты не сомневаясь в справедливости формул, к которым он прибегнул, берется еще раз перевычислять величину, от значения которой зависел окончательный ответ. Затратив уйму сил и времени, снова пришел он к заключению, что она положительна. Убежденность его в своей правоте едва ли можно было теперь поколебать.

Не меньшее основание для уверенности имел Ляпунов. «Получив… результат, противоположный результату Дарвина, я обратился к проверке своих вычислений, — писал он. — Я выполнил это с большим старанием, переделывая вычисления несколько раз, но не нашел какой-либо заметной погрешности. Я должен, следовательно, заключить, что именно мой результат является верным». В отличие от английского коллеги Александр Михайлович не просто отвергает его результат, а указывает причину разительного несогласия их выводов. «Что касается моего расхождения с Дж. Дарвином, то его легко объяснить; оно проистекает от того, что наши вычисления основывались на совершенно различных формулах», — заметил Ляпунов в статье 1905 года.

Высчитываемая величина выступала у Дарвина и у Ляпунова в совершенно несхожих обличьях. Английский ученый отыскивал ее в виде суммы бесконечного количества слагаемых, каждое из которых меньше предыдущего, предшествующего ему. Ничего необычного в таком приеме нет. При решении теоретических и прикладных задач математики давно уже использовали бесконечные ряды. Как бы ни была необъятна совокупность составляющих их членов, в результате сложения получается конечная величина. К примеру, неограниченно продолжающийся ряд дробей 1/2, 1/4, 1/8 и так далее, в котором каждое последующее число вдвое меньше предыдущего, дает в сумме единицу. Разумеется, Дарвин не мог бессчетно раз складывать, чтобы произвести в абсолютной цельности величину, служившую ему критерием устойчивости. Он удовольствовался приближенными расчетами, суммировав некоторое количество первых слагаемых, самых больших. Так и поступают обыкновенно в приблизительных решениях. Ведь вклад неучтенных, отброшенных членов в общий, совокупный итог довольно незначителен. В приведенном выше ряду сумма первых трех чисел равна 7/8, то есть близка к единице, и только 1/8 приходится на долю нескончаемой вереницы дробей, не принятых во внимание.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Александр Михайлович Ляпунов"

Книги похожие на "Александр Михайлович Ляпунов" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Анатолий Шибанов

Анатолий Шибанов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Анатолий Шибанов - Александр Михайлович Ляпунов"

Отзывы читателей о книге "Александр Михайлович Ляпунов", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.